# Variable displacement pump A10VSO

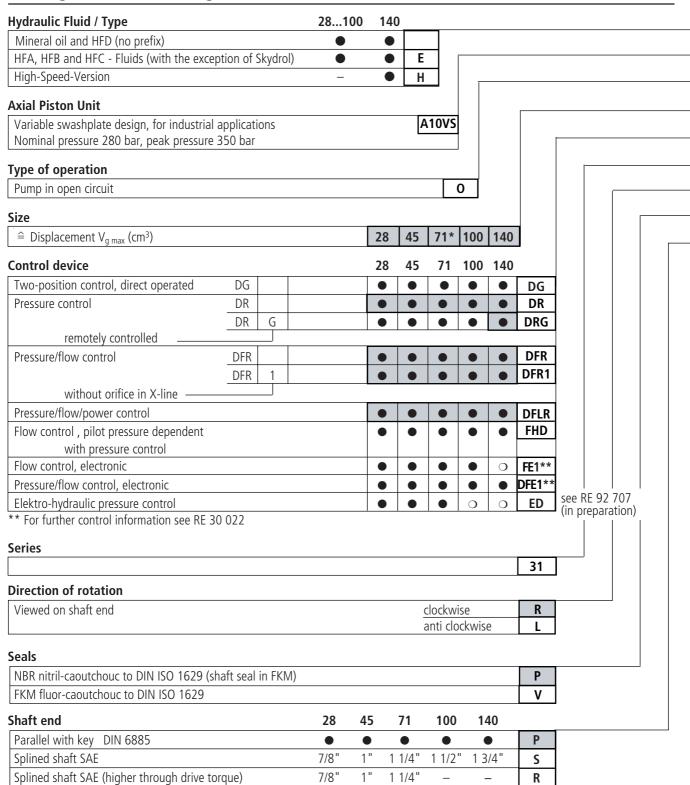
**RE 92 711/09.00** 1/40 Replaces: 03.00

#### open circuit

Size 28...140 Series 31 Nominal pressure 280 bar Peak pressure 350 bar



# **Contents**


#### Ordering Code / Standard Program 2, 3 Fluid, Mechanical Displacement Limiter, High-Speed-Version 4 Technical Data 5 6 Installation Notes Noise Characteristics 7 8, 9 Drive Power and Flow Unit Dimensions, Size 28 10 Unit Dimensions, Size 45 11 Unit Dimensions, Size 71 12 Unit Dimensions, Size 100 13 Unit Dimensions, Size 140 14 Two-position Adjustment Direct Control DG 15 Pressure Control DR 16, 17 Pressure Control, Remote Controlled DRG 18, 19 Pressure / Flow Control DFR 20, 21 Pressure / Flow / Power Control DFLR 22, 23 Flow Control, Pilot Pressure-dependent FHD 24, 25 26 Through Drives 27 **Unit Dimensions Combination Pumps** Unit Dimensions Through Drives KB2, K51, KB3 und K25 28, 29 Unit Dimensions Through Drives KB4, K26, KB5 und K27 Unit Dimensions Through Drives KB6, K37, KB7 und K59 Unit Dimensions Through Drives K01, K52, K02 und K68 Unit Dimensions Through Drives K04, K07, K24 und K17 36, 37 Unit Dimensions Through Drive K57 38 Preferred Types 39

# **Features**

- Variable displacement axial piston pump of swashplate design for hydrostatic open circuit systems
- Flow is proportional to drive speed and displacement. It can be infinitely varied by adjustment of the swashplate.
- ISO mounting flange
- Flange connections to SAE metric
- 0 2 case drain ports
  - Good suction characteristics
    - Permissible continous pressure 280 bar
  - Low noise level
  - Long service life
  - Axial and radial loading of drive shaft possible
  - High power-weight ratio
  - Wide range of controls
  - Short response times
  - Through drive option for multi-circuit system
  - Further information:

Variable Displacement Pump A10VSO RE 92 712 Size 18

# **Ordering Code / Standard Program**



# \* Project note for size 71

Pressure port B consists of a high pressure combination port SAE 11/4" standard pressure range, 3000 psi, for pressures up to 250 bar SAE 1" standard pressure range, 5000 psi, for pressures in excess of 250 bar (see page 12). For new applications high pressure port SAE 1" must be used.

prefered program (short delivery times) see list on page 39

= available

 $\bigcirc$  = in preparation

– not available

|                                                                                         |                                                                                                                                                 | A                                            | IOV                  | S O                          |        |           | 1        | 31               | -  | -      |        | 12                       |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------|------------------------------|--------|-----------|----------|------------------|----|--------|--------|--------------------------|
| Hydraulic Fluid                                                                         |                                                                                                                                                 |                                              |                      |                              |        |           |          |                  | T  | $\top$ | $\top$ | <del>'</del>             |
| Axial Piston Unit                                                                       |                                                                                                                                                 |                                              |                      |                              |        |           |          |                  |    |        |        |                          |
| Type of operation                                                                       |                                                                                                                                                 |                                              |                      |                              |        |           |          |                  |    |        |        |                          |
| Size                                                                                    |                                                                                                                                                 |                                              |                      |                              |        |           |          |                  |    |        |        |                          |
| Control device                                                                          |                                                                                                                                                 |                                              |                      |                              |        |           |          |                  |    |        |        |                          |
| Series                                                                                  |                                                                                                                                                 |                                              |                      |                              |        | · · · · · |          |                  |    |        |        |                          |
| Direction of rotation                                                                   |                                                                                                                                                 |                                              |                      |                              |        |           |          |                  |    |        |        |                          |
| Seals                                                                                   |                                                                                                                                                 |                                              |                      |                              |        |           |          |                  | _  |        |        |                          |
| Shaft end                                                                               |                                                                                                                                                 |                                              |                      |                              |        |           |          |                  |    |        |        |                          |
| Mounting flange                                                                         |                                                                                                                                                 | ,                                            | 28                   | 45                           | 71     | 100       | 140      |                  |    |        | ]      |                          |
| ISO 2-hole                                                                              |                                                                                                                                                 |                                              | •                    | •                            | •      | •         | _        | Α                |    |        |        |                          |
| ISO 4-hole                                                                              |                                                                                                                                                 |                                              | -                    | -                            | _      | О         | •        | В                |    |        |        |                          |
| Service line connection                                                                 | ns                                                                                                                                              |                                              |                      |                              |        |           |          |                  |    |        |        |                          |
| Pressure port B }                                                                       | SAE ports at opposite sides                                                                                                                     |                                              |                      |                              |        |           |          | 12               |    |        |        |                          |
| Suction port S                                                                          | Metric fixing thread                                                                                                                            |                                              |                      |                              |        |           |          | 12               |    |        |        |                          |
| Through drives                                                                          |                                                                                                                                                 |                                              |                      |                              |        |           | 28       | 45               | 71 | 100    | 140    |                          |
| without through drive                                                                   |                                                                                                                                                 |                                              |                      |                              |        |           |          | •                | •  | •      | •      | N00                      |
| with through drive to ac                                                                | ccept an axial piston pump, a gear pum                                                                                                          | p or a radia                                 | l pisto              | on pur                       | np     |           |          |                  | •  |        |        |                          |
| Mounting flange                                                                         | shaft / coupling                                                                                                                                | for mount                                    | ing of               | f:                           |        |           |          |                  |    |        |        |                          |
| ISO 80, 2-hole                                                                          | splined shaft 3/4" 19-4 (SAE A-B)                                                                                                               | A10VSO 1                                     | 0, 18                | (shaf                        | t S oı | R)        | •        | •                | •  | 0      | 0      | KB2                      |
| ISO 80, 2-hole                                                                          | keyed shaft ø18                                                                                                                                 | A10VSO 1                                     | 8                    |                              |        |           | •        | •                | •  | •      | •      | K51*                     |
| ISO 100, 2-hole                                                                         | splined shaft 7/8" 22-4 (SAE B)                                                                                                                 | A10VSO 2                                     | 28 (sh               | aft S d                      | or R)  |           | •        | 0                | •  | •      | •      | KB3                      |
| ISO 100, 2-hole                                                                         | keyed shaft ø22                                                                                                                                 | A10VSO 2                                     |                      |                              |        |           | •        | •                | •  | •      | •      | K25*                     |
| ISO 100, 2-hole                                                                         | splined shaft 1" 25-4 (SAE B-B)                                                                                                                 | A10VSO 4                                     |                      | aft S d                      | or R)  |           | _        | •                | •  | •      | •      | KB4                      |
| ISO 100, 2-hole                                                                         | keyed shaft ø25                                                                                                                                 | A10VSO 4                                     |                      |                              |        |           | -        | •                | •  | •      | •      | K26*                     |
| ISO 125, 2-hole                                                                         | splined shaft 1 1/4" 32-4 (SAE C)                                                                                                               | A10VSO 7                                     |                      | aft S d                      | or R)  |           | _        | _                | •  | •      | •      | KB5                      |
| ISO 125, 2-hole                                                                         | keyed shaft ø32                                                                                                                                 | A10VSO 7                                     |                      |                              |        |           | _        | _                |    | •      | •      | K27*                     |
| ISO 125, 2-hole                                                                         | splined shaft 1 1/2" 38-4 (SAE C-C)                                                                                                             |                                              |                      | haft S                       | )      |           | _        | _                | _  | •      | •      | KB6                      |
| ISO 125, 2-hole                                                                         | keyed shaft ø40                                                                                                                                 | A10VSO 1                                     |                      |                              |        |           |          | _                | _  | •      | •      | K37*                     |
| ISO 180, 4-hole                                                                         | splined shaft 1 3/4" 44-4 (SAE D)                                                                                                               | A10VSO 1                                     |                      | haft S                       | )      |           | _        | _                | _  | _      | •      | KB7                      |
| ISO 180, 4-hole                                                                         | keyed shaft ø45                                                                                                                                 | A10VSO 1                                     |                      |                              |        |           | _        | _                | _  | _      | •      | K59*                     |
| 82-2(SAE A, 2-hole)                                                                     | splined shaft 5/8" 16-4 (SAE A)                                                                                                                 | 1PF2G2, F                                    |                      |                              |        |           |          | •                | •  | •      | •      | K01                      |
| 82-2(SAE A, 2-hole)                                                                     | colined chaft 2/4" 10 4 (CAE A D)                                                                                                               | A10VSO 1                                     | 0, 18                | s (shaf                      | t S)   |           | •        | •                | •  | •      | •      | K52                      |
|                                                                                         | splined shaft 3/4" 19-4 (SAE A-B)                                                                                                               |                                              |                      |                              |        |           |          |                  |    |        |        | K02                      |
| 101-2(SAE B, 2-hole)                                                                    | splined shaft 7/8" 22-4 (SAE B)                                                                                                                 | 1PF2G3                                       |                      |                              |        |           | _        |                  | _  |        | +      |                          |
| 101-2(SAE B, 2-hole)<br>101-2 (SAE B)                                                   | splined shaft 7/8" 22-4 (SAE B)<br>splined shaft 22-4 (SAE B)                                                                                   | A10VO 28                                     |                      |                              |        |           | •        | •                | 0  | •      | •      | K68                      |
| 101-2(SAE B, 2-hole)<br>101-2 (SAE B)<br>101-2(SAE B)                                   | splined shaft 7/8" 22-4 (SAE B)<br>splined shaft 22-4 (SAE B)<br>splined shaft 25-4 (SAE B-B)                                                   | A10VO 28                                     | sha (sha             | ft S), I                     |        |           | <u> </u> | •                | 0  | •      | •      | K68<br>K04               |
| 101-2(SAE B, 2-hole)<br>101-2 (SAE B)<br>101-2(SAE B)<br>127-2 (SAE C)                  | splined shaft 7/8" 22-4 (SAE B)<br>splined shaft 22-4 (SAE B)<br>splined shaft 25-4 (SAE B-B)<br>splined shaft 32-4 (SAE C)                     | A10VO 28<br>A10VO 45<br>A10VO 71             | s (sha<br>I (sha     | ft S), I<br>ft S)            | PGH4   |           | •        | •                | -  | •      | -      | K68<br>K04<br>K07        |
| 101-2(SAE B, 2-hole)<br>101-2 (SAE B)<br>101-2(SAE B)<br>127-2 (SAE C)<br>127-2 (SAE C) | splined shaft 7/8" 22-4 (SAE B) splined shaft 22-4 (SAE B) splined shaft 25-4 (SAE B-B) splined shaft 32-4 (SAE C) splined shaft 38-4 (SAE C-C) | A10VO 28<br>A10VO 45<br>A10VO 77<br>A10VO 10 | sha<br>sha<br>o (sha | ft S), I<br>ft S)<br>aft S), | PGH4   |           | •        | •                | •  | •      | •      | K68<br>K04<br>K07<br>K24 |
| 101-2(SAE B, 2-hole)<br>101-2 (SAE B)<br>101-2(SAE B)<br>127-2 (SAE C)                  | splined shaft 7/8" 22-4 (SAE B)<br>splined shaft 22-4 (SAE B)<br>splined shaft 25-4 (SAE B-B)<br>splined shaft 32-4 (SAE C)                     | A10VO 28<br>A10VO 45<br>A10VO 71             | sha<br>sha<br>o (sha | ft S), I<br>ft S)<br>aft S), | PGH4   |           | •        | •<br>•<br>-<br>- | •  | •      | •      | K68<br>K04<br>K07        |

<sup>\*</sup> Not for new applications, only permissible with reduced through drive torque (see page 26)

# **Combination pumps**

1. If a **second Brueninghaus pump is to be fitted at factory** then the two model codes must be linked with a "+" sign. Model code 1st pump + Model code 2nd pump.

**Ordering example:** A10VSO 100DR/31R-PPA12KB5 + A10VSO 71DFR/31R-PSA12N00

2. If a **gear or radial piston pump is to be fitted at factory** please consult us.

#### **Technical Data**

# Hydraulic fluid

For extensive information on the range of fluids and application conditions please see our data sheet RE 90220 (mineral oils), RE 90221 (environmentally acceptable fluids) and RE 90223 (HF-fire resistant hydraulic fluids).

When using HF- or environmentally acceptable hydraulic fluids possible limitations for the technical data have to be taken into consideration. If necessary please consult our technical department (please indicate type of the hydraulic fluid used for your application on the order sheet).

Operation on Skydrol hydraulic fluid is subject to consultation.

# Operating viscosity range

In order to obtain optimum efficiency and service life, we recommend that the operating viscosity (at operating temperature) be selected from within the range

$$v_{opt}$$
 = operating viscosity 16...36 mm<sup>2</sup>/s

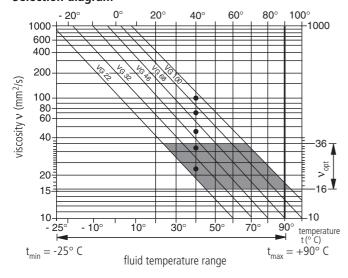
referred to the reservoir temperature (open circuit).

#### **Viscosity limits**

The limiting values for viscosity are as follows:

 $v_{min} = 10 \text{ mm}^2/\text{s}$ 

short term at a max. permissible case temp. of 90° C.


 $\nu_{\text{max}} = \ 1000 \ \text{mm}^2\text{/s}$ 

short term on cold start.

#### **Temperature range** (see selection diagram)

$$t_{min} = -25^{\circ} \text{ C}$$
  
 $t_{max} = 90^{\circ} \text{ C}$ 

#### Selection diagram



#### Notes on the selection of the hydraulic fluid

In order to select the correct fluid, it is necessary to know the operating temperature in the tank (open loop) in relation to the ambient temperature.

The hydraulic fluid should be selected so that within the operating temperature range, the operating viscosity lies within the optimum range  $(v_{ont})$  (see shaded section of the selection diagram). We recommend that the higher viscosity range should be chosen in each case.

Example: At an ambient temperature of X° C the operating temperature is  $60^{\circ}$  C. Within the operating viscosity range ( $v_{ont}$ ) shaded area), this corresponds to viscosity ranges VG 46 or VG 68; VG 68 should be selected.

Important: The leakage oil (case drain oil) temperature is influenced by pressure and pump speed and is always higher than the tank temperature. However, at no point in the circuit may the temperature exceed 90° C.

If it is not possible to comply with the above conditions because of extreme operating parameters or high ambient temperatures please consult us.

#### **Filtration**

The finer the filtration the better the cleanliness of the pressure fluid and the longer the life of the axial piston unit.

To ensure the functioning of the axial piston unit a minimum cleanliness level of:

9 to NAS 1638

18/15 to ISO/DIS 4406 is necessary.

If above mentioned grades cannot be maintained please consult supplier.

# **High-speed-version**

The size 140 is available in an optional high speed version. This version allows higher drive speeds at max. displacement (higher output flow) without affecting outside dimensions, see table on page 5.

#### Mechanical displacement limiter

Mechanical displacement limiter is possible on the nonthroughdrive model, N00 series but not for the model with through-

Exception: with FE1-, FE1D- and DFE1 control a max. displacement screw is not possible at all.

 $m V_{g~max}$  : for sizes 28 to 140 Setting range  $\rm V_{g~max}$  to 50%  $\rm V_{g~max}$  stepless

 $V_{g min}$ : for sizes 100 and 140

Setting range  $V_{q min}$  to 50%  $V_{q max}$  stepless

application of forces

#### **Technical Data**

(valid for operation on mineral oil; for HF-fluids see RE 90223 and environmentally acceptable hydraulic fluids see RE 90221)

#### Operating pressure range - inlet

Absolute pressure at port S

0,8 bar 30 bar  $p_{abs\;max\;-}$ 

## Operating pressure range - outlet

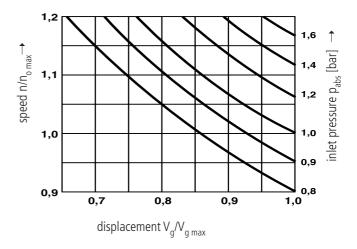
Pressure at port B

280 bar Nominal pressure p<sub>N</sub> \_\_\_ Peak pressure p<sub>max</sub> \_\_\_\_ 350 bar

(Pressure data to DIN 24312)

Applications with intermittent operating pressures up to 315 bar at 10% duty are permissible.

Limitation of pump output pressure spikes is possible with relief valve blocks mounted directly on flange connection, acc. to data sheets RE 25 880 and RE 25 890 to be ordered separately.


#### Case drain pressure

Maximum permissible pressure of leakage fluid (at port L,  $L_1$ ): Maximum 0,5 bar higher than the inlet pressure at port S, but no higher than 2 bar absolute.

# Direction of through flow

S to B.

Determination of inlet pressure p<sub>abs</sub> at suction port S or reduction of displacement for increasing speed.



**Table of values** (theoretical values, without taking into account  $\eta_{mh}$  and  $\eta_{v}$ : values rounded off)

|                                                                                        |                                       | 111111              |                  |        |        |        |        |             |
|----------------------------------------------------------------------------------------|---------------------------------------|---------------------|------------------|--------|--------|--------|--------|-------------|
| Size                                                                                   |                                       |                     |                  | 28     | 45     | 71     | 100    | 140/High-S* |
| Displacement                                                                           |                                       | $V_{g max}$         | cm <sup>3</sup>  | 28     | 45     | 71     | 100    | 140/140     |
| Max. speed <sup>1</sup> )                                                              | at $V_{g max}$                        | n <sub>o max</sub>  | rpm              | 3000   | 2600   | 2200   | 2000   | 1800/2050   |
| Max. permitted speed (limit speed) with increased input pressure p <sub>abs</sub> bzw. |                                       | n <sub>o max</sub>  | rpm              | 3600   | 3100   | 2600   | 2400   | 2100/2200   |
| Max. flow                                                                              | at n <sub>o max</sub>                 | q <sub>vo max</sub> | L/min            | 84     | 117    | 156    | 200    | 252/287     |
|                                                                                        | at $n_{\rm E} = 1500 \; \rm min^{-1}$ |                     | L/min            | 42     | 68     | 107    | 150    | 210         |
| Max. power                                                                             | at n <sub>o max</sub>                 | P <sub>o max</sub>  | kW               | 39     | 55     | 73     | 93     | 118/134     |
| $(\Delta p = 280 \text{ bar})$                                                         | at $n_{\rm E} = 1500  \rm min^{-1}$   |                     | kW               | 20     | 32     | 50     | 70     | 98          |
| Max. torque ( $\Delta p = 280 \text{ bar}$ )                                           | at $V_{g  max}$                       | $T_{max}$           | Nm               | 125    | 200    | 316    | 445    | 623         |
| Torque ( $\Delta p = 100 \text{ bar}$ )                                                | at V <sub>g max</sub>                 | T                   | Nm               | 45     | 72     | 113    | 159    | 223         |
| Moment of inertia about drive axis                                                     | -                                     | J                   | kgm <sup>2</sup> | 0,0017 | 0,0033 | 0,0083 | 0,0167 | 0,0242      |
| Case volume                                                                            |                                       |                     | L                | 0,7    | 1,0    | 1,6    | 2,2    | 3,0         |
| Weight (without fluid)                                                                 |                                       | m                   | kg               | 15     | 21     | 33     | 45     | 60          |
| Permissible loading of drive shaft:                                                    | max. axial force                      | F <sub>ax max</sub> | N                | 1000   | 1500   | 2400   | 4000   | 4800        |
| Max. permissible radial force <sup>2</sup> )                                           |                                       | F <sub>q max</sub>  | N                | 1200   | 1500   | 1900   | 2300   | 2800        |
|                                                                                        | ·                                     |                     |                  |        |        |        |        |             |

<sup>\*=</sup> High-Speed-Version

1) These values are valid for an absolute pressure of 1 bar at the suction port S. By reducing the displacement or increasing the input pressure the speed can be increased as shown in the diagram.

<sup>2</sup>) Please consult us for higher radial forces.

#### **Determination of displacement**

V<sub>a</sub> = displacement [cm<sup>3</sup>] per revolution Flow [L/min]  $\Delta p$  = pressure differential [bar]  $T = \ \frac{1,59 \bullet V_g \bullet \Delta p}{100 \bullet \eta_{mh}} = \ \frac{V_g \bullet \Delta p}{20 \bullet \pi \bullet \eta_{mh}}$ n = speed [rpm] Torque  $\eta_{v}$  = volumetric efficiency  $\eta_{\text{mh}} = \text{ mechanical-hydraulic efficiency}$  $P = \frac{T \cdot n}{9549} = \frac{2 \pi \cdot T \cdot n}{60000} = \frac{q_v \cdot \Delta p}{600 \cdot \eta_t}$ Power  $\eta_t$  = overall efficiency ( $\eta_t = \eta_v \bullet \eta_{mh}$ )

#### **Installation Notes**

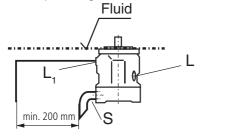
Optional installation position. The pump housing must be filled with fluid during commissioning and remain full when operating.

In order to attain the lowest noise level, all connections (suction, pressure, case drain ports) must be linked by flexible couplings to tank.

Avoid placing a check valve in the case drain line.

This may, however, be permissible in individual cases, after consultation with us.

#### **1. Vertical installation** (shaft end upwards)


The following installation conditions must be taken into account:

#### 1.1. Arrangement in the reservoir

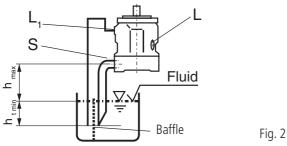
Before installation fill pump housing, keeping it in a horizontal position.

- a) If the minimum fluid level is equal to or above the pump mounting face close port "L" plugged, leave ports " $L_1$ " and "S" open;  $L_1$  piped and recommendation S piped (see Fig. 1).
- b) If the minimum fluid level is below the pump mounting face pipe port " $L_1$ " and "S" according to Fig. 2.

Close port "L" with respect taking into consideration conditions in 1.2.1.



## 1.2. Arrangement outside the reservoir


Before installation fill the pump housing, keeping it in a horizontal position. For mounting above reservoir see Fig. 2.

Limiting condition:

**1.2.1.** Minimum pump inlet pressure  $p_{abs\ min}=0.8$  bar under both static and dynamic conditions.

Note: Avoid mounting above reservoir wherever possible in order to achieve a low noise level.

The permissible suction height h comes from the overall pressure loss, but may not be bigger than  $h_{max}=800$  mm (immersion depth  $h_{t\,min}=200$  mm).

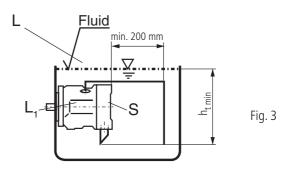


Overall pressure loss  $\Delta p_{tot} = \Delta p_1 + \Delta p_2 + \Delta p_3 \le (1 - p_{abs min}) = 0.2$  bar  $\Delta p_1$ : Pressure loss in pipe due to accelerating column of fluid

$$\begin{split} \Delta \rho_1 = & \begin{array}{c} \frac{\rho \bullet I \bullet dv}{dt} \bullet 10^{-5} \text{ (bar)} \\ & I = \text{pipe lenght (m)} \\ & dv/dt = \text{rate of change} \\ & \Delta \rho_2 \text{: Pressure loss due to static head} \end{split}$$

 $\Delta p_2$ . Pressure loss due to static flead  $\Delta p_2 = h \cdot \rho \cdot g \cdot 10^{-5}$  (bar)

h = height (m)  $\rho = density (kg/m^3)$  $g = gravity = 9.81 m/s^2$ 


 $\Delta p_3$ : Line losses (elbows etc.)

#### 2. Horizontal installation

The pump must be installed, so that "L" or " $L_1$ " is at the top.

#### 2.1. Arrangement in the reservoir

- a) If the minimum fluid level is above the top of the pump, port  $"L_1"$  closed, "L" and "S" should remain open, L piped and recommendation S piped (see Fig. 3)
- b) If the minimum fluid level is equal to or below the top of the pump, pipe ports "L" and possibly "S" as Fig. 4.; close port " $L_1$ ". The conditions according to item 1.2.1.



#### 2.2. Installation outside the reservoir

Fig. 1

Fill the pump housing before commissioning.

Pipe ports "S" and the higher port "L" or "L<sub>1</sub>".

a) When mounting above the reservoir, see Fig. 4.

Conditions according to 1.2.1.

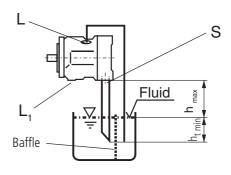



Fig. 4

b) Mounting below the reservoir

Pipe ports "L<sub>1</sub>" and "S" according to Fig.5, close port "L".

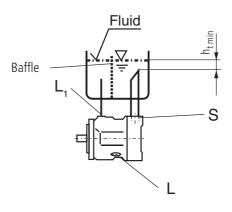
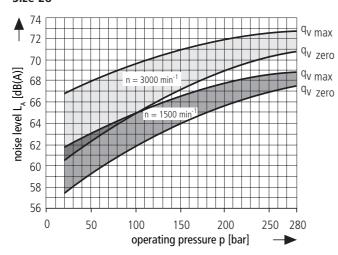


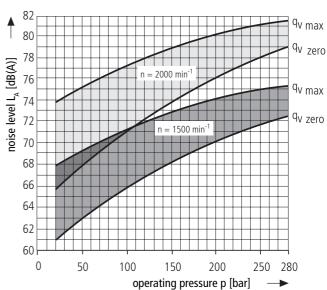

Fig. 5

# **Performance Curves for Pump with Pressure Control DR**

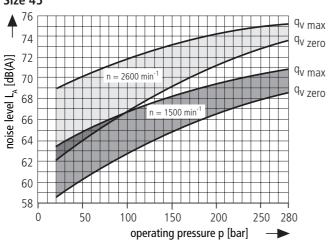
#### Noise level


Measured in an anechoic chamber

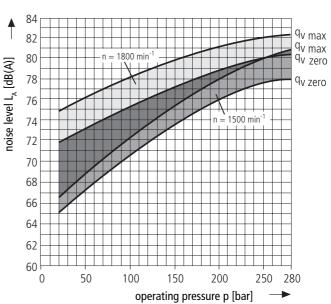
Distance from microphone to pump = 1 m


Measuring error: ± 2 dB (A)

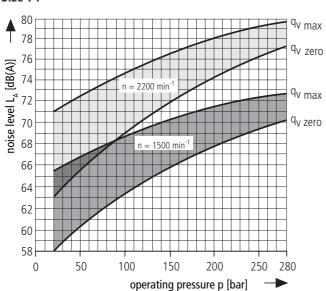
(Fluid: Hydraulic oil to ISO VG 46 DIN 51519,  $t = 50^{\circ}$  C)


## Size 28




# Size 100



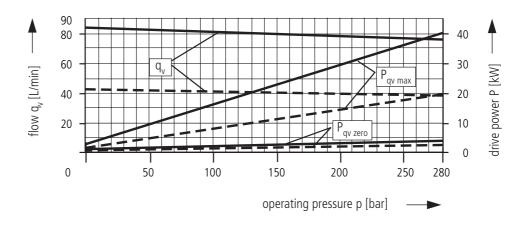

#### Size 45



Size 140



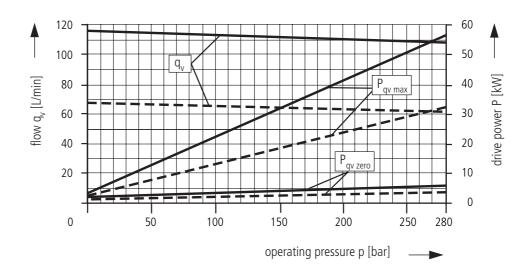
#### Size 71




# **Drive Power and Output Flow**

(Fluid: Hydraulic oil ISO VG 46 DIN 51519,  $t = 50^{\circ}$  C)

Size 28


 $---n = 1500 \text{ min}^{-1}$ -----  $n = 3000 \text{ min}^{-1}$ 



Size 45

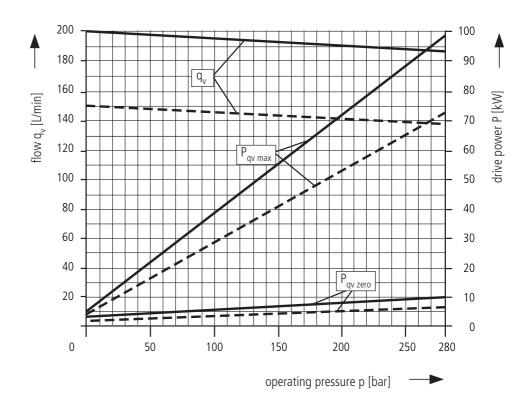
 $---n = 1500 \text{ min}^{-1}$ 

---- n = 2600 min<sup>-1</sup>



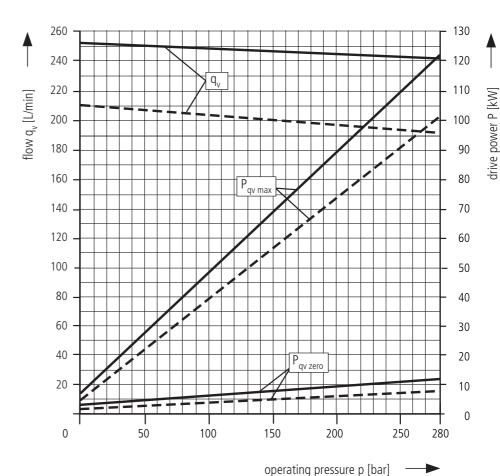
Size 71

 $---n = 1500 \text{ min}^{-1}$ 


\_\_\_\_\_  $n = 2200 \text{ min}^{-1}$ 



(Fluid: Hydraulic oil ISO VG 46 DIN 51519,  $t = 50^{\circ}$  C)


#### Size 100

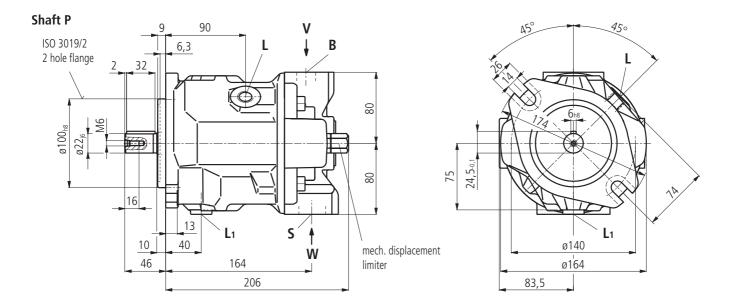
$$---- n = 1500 \text{ min}^{-1}$$
  
-----  $n = 2000 \text{ min}^{-1}$ 



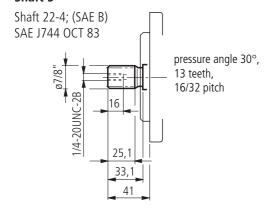
# Size 140

$$---n = 1500 \text{ min}^{-1}$$
  
———  $n = 1800 \text{ min}^{-1}$ 

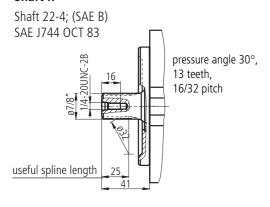


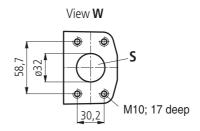

Overall efficiency  $\eta_t = \begin{array}{c} q_v \bullet p \\ \hline P_{\text{nv max}} \bullet 600 \end{array}$ 

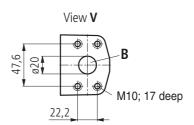
Volumetric efficiency


$$\eta_v = \frac{q_v}{q_{v \text{ theor}}}$$

N**00** model (without through drive) without control valves

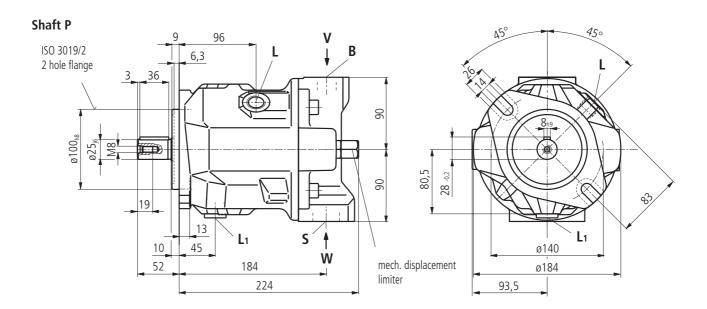

Before finishing your design, please request a certified drawing.



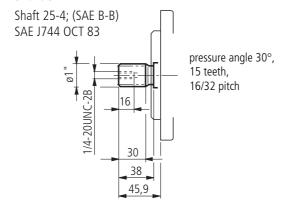


#### Shaft S



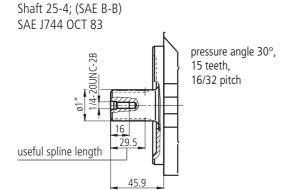
#### Shaft R

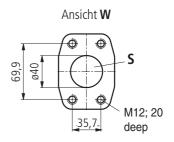


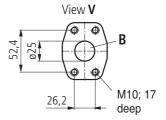



N**00** model (without through drive) without control valves


Before finishing your design, please request a certified drawing.





#### Shaft S



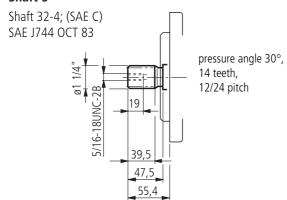
#### Shaft R



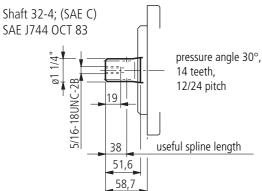


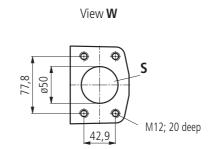


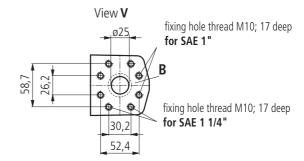

B Pressure port SAE 1 "
S Suction port SAE 1 1/2 "
L/L, Case drain ports M22x1,5


(Standard pressure range) (Standard pressure range) (L, plugged at factory)

N**00** model (without through drive) without control valves


Before finishing your design, please request a certified drawing.





#### Shaft S



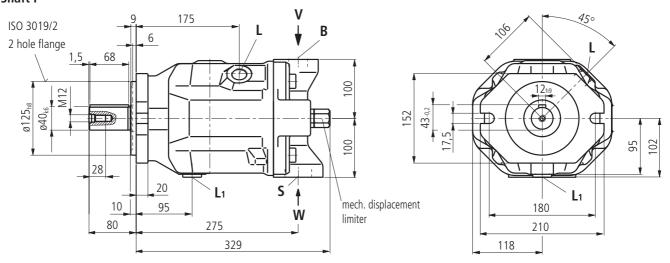
# Shaft R



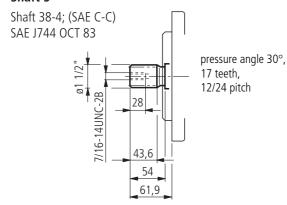


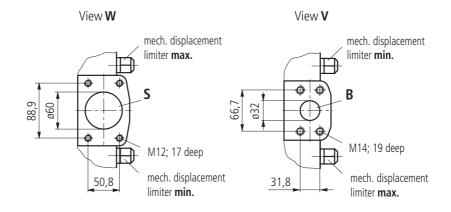


#### Note:


At **pressure port B** there are two SAE mountings available, each offset by 90°. **SAE 1 1/4"** Standard pressure range, 3000 psi, for pressures **up to 250 bar** or **SAE 1"** Standard pressure range, 5000 psi, for pressures **in excess of 250 bar**. For operating pressures in excess of 250 bar or for new projects an SAE 1" pressure flange should be used.

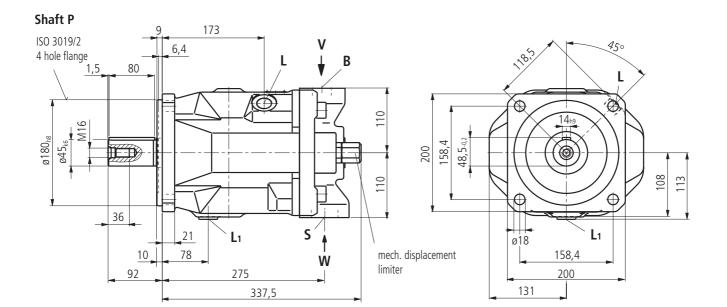
| В                | Pressure port    | SAE 1"  | (Standard pressure range) bolt hole threads to either SAE 1" or SAE 1 1/4" (optional) |
|------------------|------------------|---------|---------------------------------------------------------------------------------------|
| S                | Suction port     | SAE 2"  | (Standard pressure range)                                                             |
| L/L <sub>1</sub> | Case drain ports | M22x1,5 | (L <sub>1</sub> plugged at factory)                                                   |


N**00** model (without through drive) without control valves

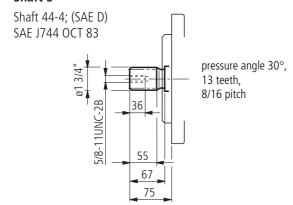

#### Before finishing your design, please request a certified drawing.

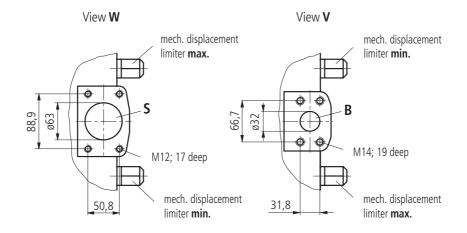
#### **Shaft P**




## Shaft S







N**00** model (without through drive) without control valves

Before finishing your design, please request a certified drawing.



## Shaft S





B Pressure port SAE 1 1
S Suction port SAE 2 1
L/L, Case drain ports M27x2

SAE 1 1/4" SAE 2 1/2" M27x2

(High pressure range) (Standard pressure range) (L<sub>1</sub> plugged at factory)

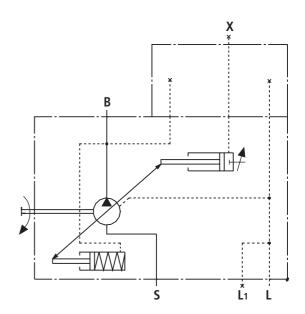
# DG 2-position adjustment, direct control

The pump can be set to a minimum swivel anle by connecting an external switching pressure to port X.

This pressure acts directly onto the control piston, a min. control pressure of at least 30 bar is required.

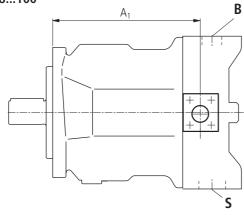
The pump can only be switched between  $\mathrm{V}_{\mathrm{gmax}}$  and  $\mathrm{V}_{\mathrm{gmin}}.$ 

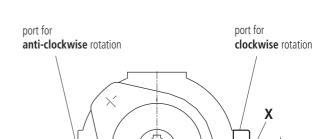
The switching pressure  $p_{st}$  depends on pump output pressure at a ratio of 1:4


$$p_{St} = \frac{p}{4}$$

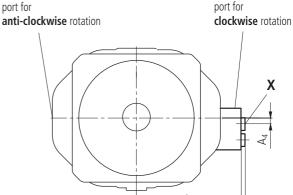
switching pressure  $p_{St}$  in X=0 bar  $\stackrel{\triangle}{=}V_{gmax}$  switching pressure  $p_{St}$  in  $X\geq 30$  bar or  $\frac{p}{4}\stackrel{\triangle}{=}V_{gmin}$ 

#### **Controller data**


| min. switching pressure | 30 bar  |
|-------------------------|---------|
| max. switching pressure | 280 bar |

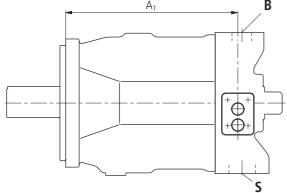

#### Before finishing your design, please request a certified drawing.




# **Unit dimensions**

Sizes 28...100










A<sub>3</sub>

# **Size 140**

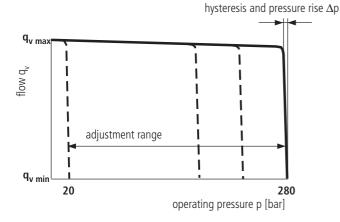


#### **Unit dimensions**

| Size | A <sub>1</sub> | A <sub>2</sub> | A <sub>3</sub> | <b>A</b> <sub>4</sub> | X (plugged) |
|------|----------------|----------------|----------------|-----------------------|-------------|
| 28   | 158            | 100            | 103,5          | 3                     | R 1/4"      |
| 45   | 173            | 110            | 113,5          | 3                     | R 1/4"      |
| 71   | 201            | 123,5          | 127,5          | 3                     | R 1/4"      |
| 100  | 268            | 128,5          | 132,5          | 3                     | R 1/4"      |
| 140  | 268            | 153            | 158            | 4,6                   | M14x1,5     |

**Ports** 

B Pressure portS Suction port


L, L1 Case drain ports (L1 plugged)X Pilot pressure port (plugged)

## **DR** Pressure Control

The pressure controller serves to maintain a constant pressure in a hydraulic system within the control range of the pump. The pump therefore supplies only the amount of hydraulic fluid required by the system. Pressure may be steplessly set at the control valve.

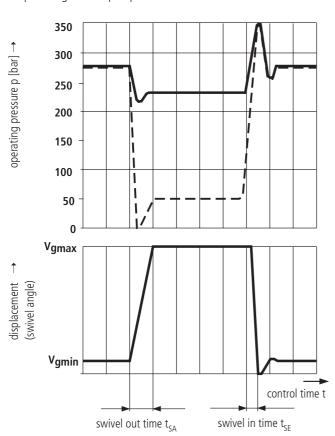
# Static operating curve

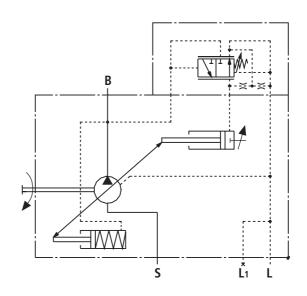
(at 
$$n_1 = 1500 \text{ rpm}$$
;  $t_{oil} = 50^{\circ} \text{ C}$ )



# **Dynamic operating curves**

The operating curves are mean values measured under test conditions with the unit mounted inside the tank.


Conditions:


$$n = 1500 \text{ rpm}$$

$$t_{oil} = 50^{\circ} \text{ C}$$

Main relief set at 350 bar

Load steps were obtained by suddenly opening and closing the pressure line with a pressure relief valve as load valve 1 m from the output flange of the pump.





#### **Ports**

**B** Pressure port

**S** Suction port

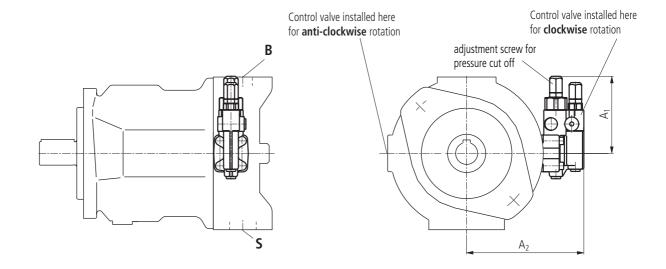
L, L1 Case drain ports (L1 plugged)

## Controller data

Hysteresis and repetitive accuracy  $\Delta p$  \_\_\_\_\_ max. 3 bar

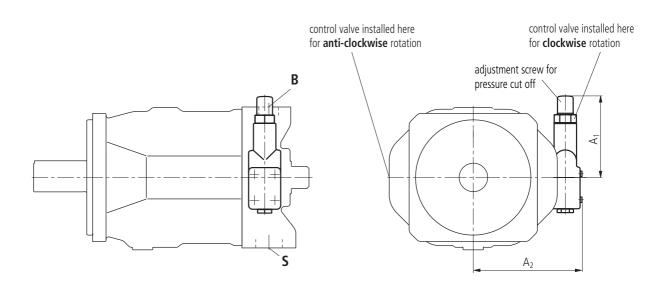
Max. Pressure rise

| Size |     | 28 | 45 | 71 | 100 | 140 |
|------|-----|----|----|----|-----|-----|
| Δρ   | bar | 4  | 6  | 8  | 10  | 12  |


Pilot oil requirement \_\_\_\_\_ max. approx 3 L/min Flow loss at  $q_{vmax}$  see pages 8 and 9.

#### **Control times**

| t <sub>sa</sub> (ms) | t <sub>sa</sub> (ms)   | t <sub>se</sub> (ms)                                                                                 |
|----------------------|------------------------|------------------------------------------------------------------------------------------------------|
| against 50 bar       | against 220 bar        | stalled at 280 bar                                                                                   |
| 60                   | 30                     | 20                                                                                                   |
| 80                   | 40                     | 20                                                                                                   |
| 100                  | 50                     | 25                                                                                                   |
| 125                  | 90                     | 30                                                                                                   |
| 130                  | 110                    | 30                                                                                                   |
|                      | 60<br>80<br>100<br>125 | against 50 bar     against 220 bar       60     30       80     40       100     50       125     90 |


# Unit Dimensions Pressure Control DR

Sizes 28...100



On sizes 28 to 100 the DFR valve used has the flow control spool blocked in the factory and is not tested.

Size 140



| Size | A <sub>1</sub> | A <sub>2</sub> |  |
|------|----------------|----------------|--|
| 28   | 109            | 136            |  |
| 45   | 106            | 146            |  |
| 71   | 106            | 160            |  |
| 100  | 106            | 165            |  |
| 140  | 127            | 169            |  |

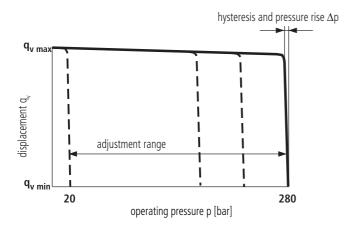
# **DRG** Pressure Controller, Remote Control

Function and equipment as for DR.

A pressure relief valve can be connected to port X for remote control applications; this is not included in the items supplied with the DRG control.

The standard pressure differential setting at the control valve is 20 bar. A pilot oil flow of approx. 1,5 L/min is then used. If an other setting (range 10-22 bar) is required please indicate in clear text.

We recommend the following as separate pressure relief valves:


DBDH 6 (hydraulic) to RE 25402 or

DBETR -SO 381 with orifice Ø0,8 in P (electric) to RE 29166.

The max. pipe length should not exceed 2m.

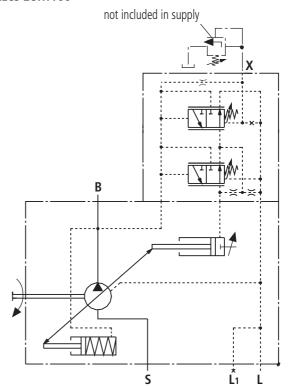
#### **Static Operating Curve**

(at  $n_1 = 1500 \text{ rpm}$ ;  $t_{oil} = 50^{\circ} \text{ C}$ )

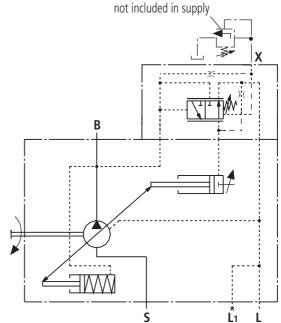


#### **Controller data**

| Hysteresis Δp      | max. 3 bar |
|--------------------|------------|
| Max. pressure rise |            |


 Size
 28
 45
 71
 100
 140

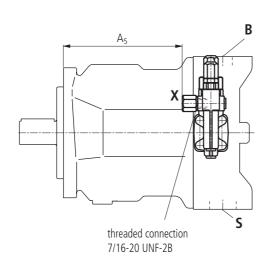
 Δp
 bar
 4
 6
 8
 10
 12

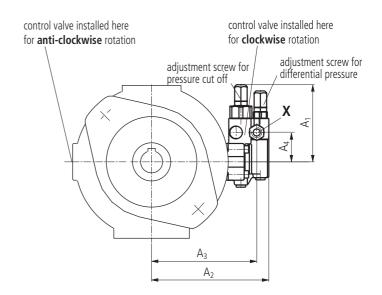

Pilot oil requirement \_\_\_\_\_\_ approx. 4,5 L/min

Flow loss at  $qv_{max}$  see pages 8 and 9.

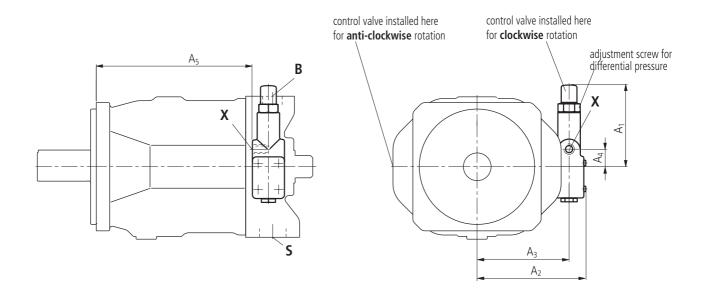
#### Sizes 28...100




Size 140




| Ports |                                |
|-------|--------------------------------|
| В     | Pressure port                  |
| S     | Suction port                   |
| L, L1 | Case drain ports ( L1 plugged) |
| Χ     | Pilot pressure port            |


# Unit Dimensions Pressure Controller with Remote Control DRG

Size 28...100

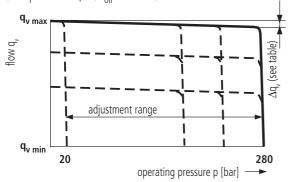




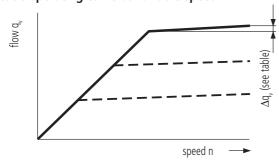
Size 140



| Size | A <sub>1</sub> | A <sub>2</sub> | A <sub>3</sub> | <b>A</b> <sub>4</sub> | <b>A</b> <sub>5</sub> | Port X                           |
|------|----------------|----------------|----------------|-----------------------|-----------------------|----------------------------------|
| 28   | 109            | 136            | 119            | 40                    | 119                   | M14x1,5; 12 deep <b>1</b>        |
| 45   | 106            | 146            | 129            | 40                    | 134                   | M14x1,5; 12 deep                 |
| 71   | 106            | 160            | 143            | 40                    | 162                   | M14x1,5; 12 deep with adaptor    |
| 100  | 106            | 165            | 148            | 40                    | 229                   | M14x1,5; 12 deep                 |
| 140  | 127            | 169            | 143            | 27                    | 244                   | M14x1,5; 12 deep without adaptor |

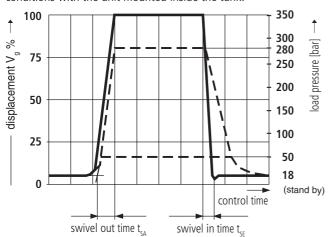

# **DFR/DFR1** Pressure / Flow Control

In addition to the pressure control function, the pump flow may be varied by means of a differential pressure over an orifice or valvespool, installed in the service line. The pump flow is equal to the actual required flow by the actuator.

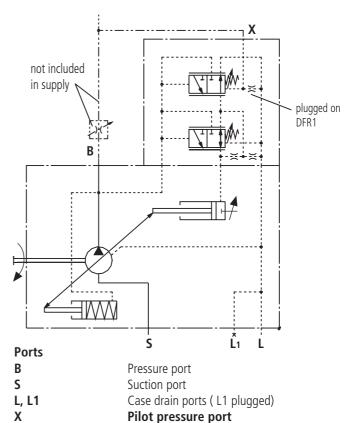

The DFR1-valve has no connection between X and the tank. For function of pressure control see pages 16/17.

#### Static operating curve

(at  $n_1 = 1500 \text{ rpm}$ ;  $t_{oil} = 50^{\circ} \text{ C}$ )




#### Static operating curve at variable speed




## Dynamic flow control operating curve

The operating curves are average values measured under test conditions with the unit mounted inside the tank.



| NG  | t <sub>sa</sub> [ms]<br>stand by–280 bar | t <sub>se</sub> [ms]<br>280 bar–stand by | t <sub>se</sub><br>50 bar–stand by |
|-----|------------------------------------------|------------------------------------------|------------------------------------|
| 28  | 40                                       | 20                                       | 40                                 |
| 45  | 50                                       | 25                                       | 50                                 |
| 71  | 60                                       | 30                                       | 60                                 |
| 100 | 120                                      | 60                                       | 120                                |
| 140 | 130                                      | 60                                       | 130                                |



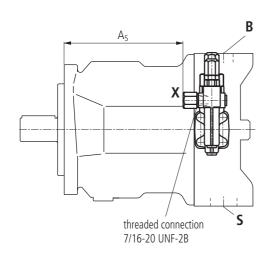
## Differential pressure $\Delta p$ :

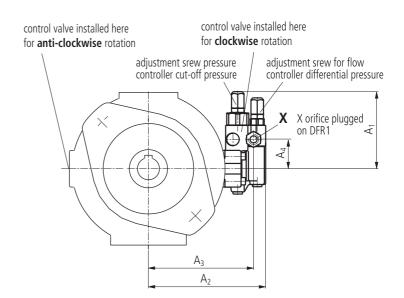
Adjustable between 10 and 22 bar (higher values on request). Standard setting: 14 bar. If a different setting is required please indicate in clear text.

When port X is unloaded to tank a "zerostroke pressure" of  $p = 18 \pm 2$  bar ("stand by") results (dependent on  $\Delta p$ ).

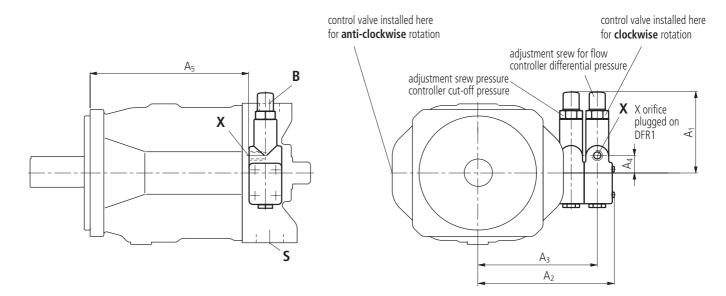
#### **Controller data**

Data pressure controller see page 16.


Max. flow variation (hysteresis and increase) measured at drive speed  $n=1500\ rpm$ 


| Size               |       | 28  | 45  | 71  | 100 | 140 |
|--------------------|-------|-----|-----|-----|-----|-----|
| $\Delta q v_{max}$ | L/min | 1,0 | 1,8 | 2,8 | 4,0 | 6,0 |

DFR pilot oil consumption \_\_\_\_\_ max. approx. 3 ... 4,5 L/min DFR1 pilot oil consumption \_\_\_\_\_ max. approx. 3 L/min Flow loss at  $q_{vmax}$  see page 8 and 9.


# Unit Dimensions DFR; DFR1 Pressure and Flow Control

Sizes 28...100

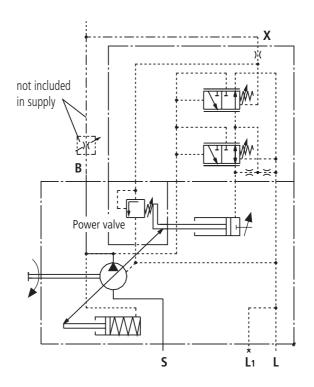




Size 140



| NG  | A <sub>1</sub> | A <sub>2</sub> | A <sub>3</sub> | <b>A</b> <sub>4</sub> | <b>A</b> <sub>5</sub> | port X           |                 |
|-----|----------------|----------------|----------------|-----------------------|-----------------------|------------------|-----------------|
| 28  | 109            | 136            | 119            | 40                    | 119                   | M14x1,5; 12 deep | 1               |
| 45  | 106            | 146            | 129            | 40                    | 134                   | M14x1,5; 12 deep | with adaptor    |
| 71  | 106            | 160            | 143            | 40                    | 162                   | M14x1,5; 12 deep | with adaptor    |
| 100 | 106            | 165            | 148            | 40                    | 229                   | M14x1,5; 12 deep | J               |
| 140 | 127            | 209            | 183            | 27                    | 244                   | M14x1,5; 12 deep | without adaptor |


# **DFLR** Pressure / Flow / Power Control

In order to achieve a constant drive torque with a varying operating pressure, the swivel angle and with it the output flow of the axial piston pump is varied so that the product of flow and pressure remains constant.

Constant flow control is possible below the power curve.

# Static operating curve



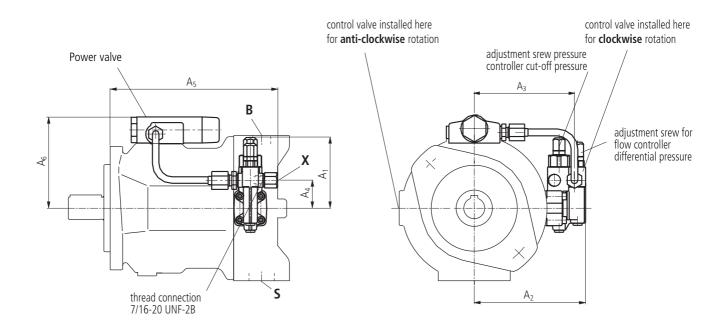


| Ports |                               |
|-------|-------------------------------|
| В     | Pressure port                 |
| S     | Suction port                  |
| L, L1 | Case drain ports (L1 plugged) |
| X     | Pilot pressure port           |

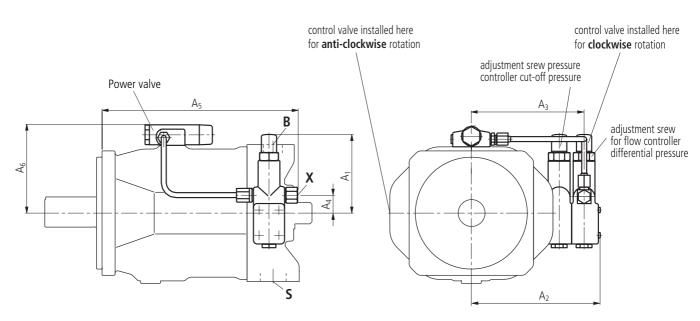
The power curve is set at the factory, please state your requirements in clear text e.g. 20 kW at 1500 rpm.

#### **Controller data**

Technical data constant pressure control see page 16.


Technical data flow control see page 20.

Start of control \_\_\_\_\_\_from 80 bar Pilot oil requirement \_\_\_\_\_ max. approx. 5,5 L/min


Flow loss at  $\mathbf{q}_{\text{vmax}}$  see pages 8 and 9.

# Unit Dimensions Pressure / Flow / Power Control DFLR

Sizes 28...100



Size 140



| NG  | <b>A</b> <sub>1</sub> | A <sub>2</sub> | A <sub>3</sub> | $A_4$ | <b>A</b> <sub>5</sub> | <b>A</b> <sub>6</sub> | Port X           |
|-----|-----------------------|----------------|----------------|-------|-----------------------|-----------------------|------------------|
| 28  | 109                   | 136            | 119            | 40    | 197                   | 107                   | M14x1,5; 12 deep |
| 45  | 106                   | 146            | 129            | 40    | 212                   | 112                   | M14x1,5; 12 deep |
| 71  | 106                   | 160            | 143            | 40    | 240                   | 124                   | M14x1,5; 12 deep |
| 100 | 106                   | 165            | 148            | 40    | 307                   | 129                   | M14x1,5; 12 deep |
| 140 | 127                   | 209            | 183            | 27    | 314                   | 140                   | M14x1,5; 12 deep |

# FHD Pilot Pressure Dependent Flow Control with Pressure Cut-off

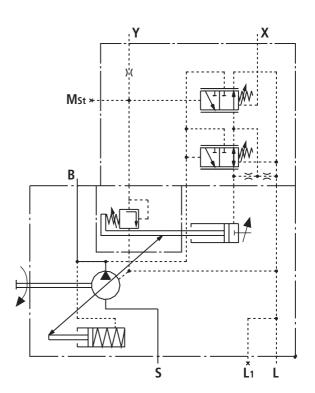
The swivel angle of the pump and therefore its displacement is dependent on the pilot pressure  $p_{St\;X}$  present in port X.

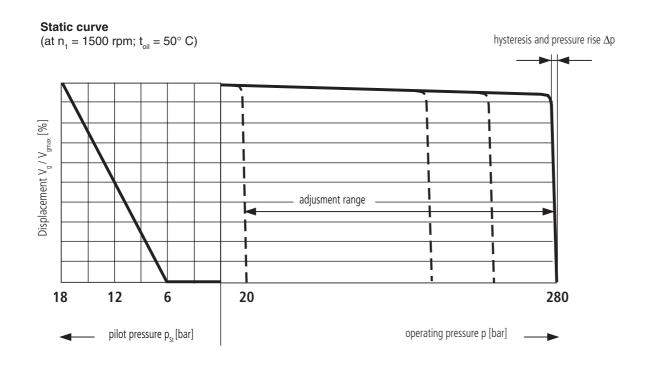
A constant pressure of  $p_y=35$  bar must be applied to port Y. The integral pressure control is steplessly adjustable.

(Please state set value required in clear text).

#### **Controller data**

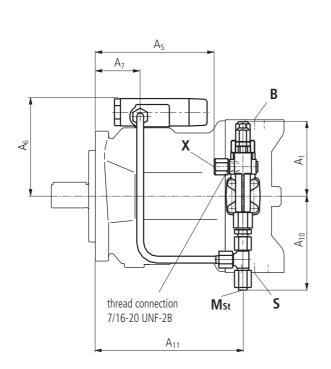
Hysteresis  $\pm$  2 % of V $_{g max}$  External pilot oil consumption in Y \_\_\_\_ max. approx. 3 ... 4,5 L/min Pressure rise  $\Delta p$  \_\_\_\_ max. 4 bar Flow loss at  $q_{vmax}$  see pages 8 and 9.

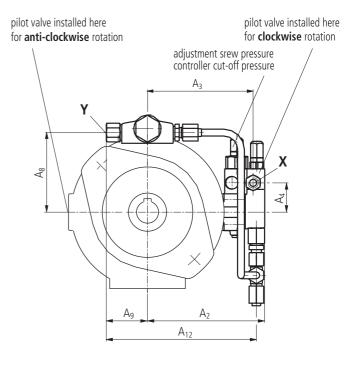

## **Ports**


B Pressure port
S Suction port

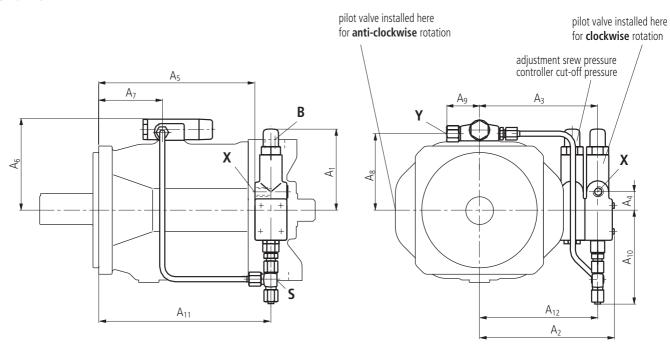
**L, L1** Case drain port ( L1 plugged)

**X, Y** Pilot pressure ports


MSt Test port







# Unit Dimensions FHD Pilot Pressure Dependent Flow Control with Pressure Cut-off

Sizes 28...100





**Size 140** 



| NG  | $A_1$ | $A_2$ | $A_3$ | $A_4$ | $A_{5}$ | $A_6$ | $A_7$ | $A_8$ | $A_9$ | $A_{10}$ | A <sub>11</sub> | A <sub>12</sub> | Port X  | Port Y  | M <sub>st</sub>          |
|-----|-------|-------|-------|-------|---------|-------|-------|-------|-------|----------|-----------------|-----------------|---------|---------|--------------------------|
| 28  | 109   | 136   | 119   | 40    | 119     | 107   | 48    | 86    | 51    | 113      | 158             | 124             | M14x1,5 | M14x1,5 | Pipe dia ø8x1,5 DIN 2391 |
| 45  | 106   | 146   | 129   | 40    | 134     | 112   | 54    | 91,5  | 51    | 113      | 173             | 134             | M14x1,5 | M14x1,5 | Pipe dia ø8x1,5 DIN 2391 |
| 71  | 106   | 160   | 143   | 40    | 162     | 124   | 69    | 103,5 | 51    | 113      | 201             | 148             | M14x1,5 | M14x1,5 | Pipe dia ø8x1,5 DIN 2391 |
| 100 | 106   | 165   | 148   | 40    | 229     | 129   | 111   | 108,5 | 51    | 113      | 268             | 153             | M14x1,5 | M14x1,5 | Pipe dia ø8x1,5 DIN 2391 |
| 140 | 127   | 209   | 183   | 27    | 244     | 140   | 99    | 119   | 51    | 150      | 268             | 183             | M14x1,5 | M14x1,5 | Pipe dia ø8x1,5 DIN 2391 |

# Through drive

The A10VSO pump can be supplied with through drive in accordance with the type code on page 3.

The through drive version is designated by the code numbers (KB2–K57).

If no other pumps are fitted by the manufacturer, the simple type designation is sufficient.

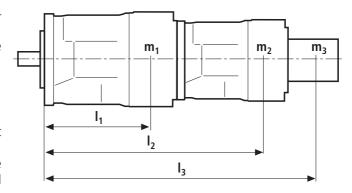
in this case, the delivery package comprises:

Hub, fixing screws, seal and, if necessary, an adaptor flange.

# **Combination pump**

By building on further pumps it is possible to obtain independent circuits:

 If the combination pump consists of 2 A10VSO and if these are to be supplied assembled then the two order codes should be linked by means of a "+" sign.


Ordering example:

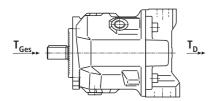
A10VSO 71 DR/31 L-PPA12KB3 +

A10VSO 28 DR/31 L-PSA12N00

If a gear or radial piston pump is to be built on at the factory, please consult us.

#### Permissible moment of inertia




m<sub>1</sub>, m<sub>2</sub>, m<sub>3</sub> [kg] Pump mass

 $l_1$ ,  $l_2$ ,  $l_3$  [mm] Distance to center of gravity

$$T_{m} = (m_{1} \bullet l_{1} + m_{2} \bullet l_{2} + m_{3} \bullet l_{3}) \bullet \frac{1}{102} [Nm]$$

| Size                                                                                    |                  |    | 28  | 45   | 71   | 100  | 140  |
|-----------------------------------------------------------------------------------------|------------------|----|-----|------|------|------|------|
| Permissible moment of inertia                                                           | ı T <sub>m</sub> | Nm | 880 | 1370 | 2160 | 3000 | 4500 |
| Permissible moment of inertia at dynamic mass acceleration $10g = 98.1 \text{ m/sec}^2$ |                  | Nm | 88  | 137  | 216  | 300  | 450  |
| Mass                                                                                    | m <sub>1</sub>   | kg | 15  | 21   | 33   | 45   | 60   |
| To center of gravity                                                                    | I <sub>1</sub>   | mm | 110 | 130  | 150  | 160  | 160  |

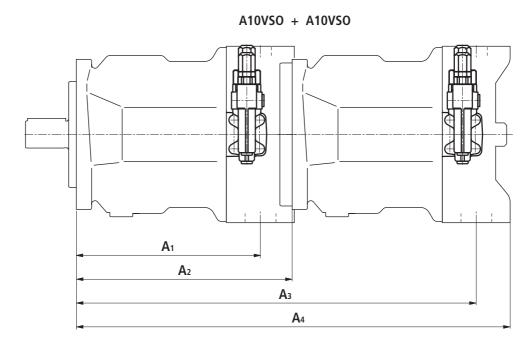
# Maximum permissible input and through drive torque



The split in torque between pump 1 and 2 is optional. The max. permissible input torque  $T_{tot}$  as well as the max. permissible throughdrive torque  $T_{n}$  may not be exceeded.

| Size                                                                | 28     | 45      | 71    | 100 | 140  |
|---------------------------------------------------------------------|--------|---------|-------|-----|------|
| Max. permissible input torque at pump                               | 1 witl | h shaft | : "P" |     |      |
| T <sub>tot</sub> Nn                                                 | 137    | 200     | 439   | 857 | 1206 |
|                                                                     |        | 200     |       |     |      |
| Max. permissible through-drive torque T <sub>D keyed shaft</sub> Nm | 112    | 179     | 283   | 398 | 557  |

| Size                                  |     | 28   | 45    | 71  | 100  | 140  |
|---------------------------------------|-----|------|-------|-----|------|------|
| Max. permissible input torque at pum  | p 1 | with | shaft | "S" |      |      |
| $T_{tot}$ $N$                         | lm  | 198  | 319   | 626 | 1104 | 1620 |
| Max. permissible through-drive torque | lm  | 160  | 319   | 492 | 778  | 1266 |
| T <sub>D keyed shaft</sub> N          | lm  | 112  | 179   | 283 | 398  | 557  |


| Size                                    | 28   | 45    | 71  | 100 | 140 |
|-----------------------------------------|------|-------|-----|-----|-----|
| Max. permissible input torque at pump 1 | with | shaft | "R" |     |     |
| $T_{tot}$ Nm                            | 225  | 400   | 644 | _   | _   |
| May parmissible through drive torque    |      | 365   |     |     | _   |
| T <sub>D keyed shaft</sub> Nm           | 112  | 179   | 283 | _   | _   |

 $T_{tot}$  = Max. permissible input torque at pump 1

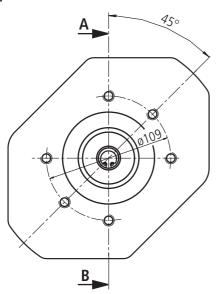
Max. permissible through-drive torque at through-drive to splined shaft

 $T_{D \text{ keyed shaft}} = Max.$  permissible through-drive torque at through-drive to keyed shaft

# **Unit Dimensions: Combination Pumps**

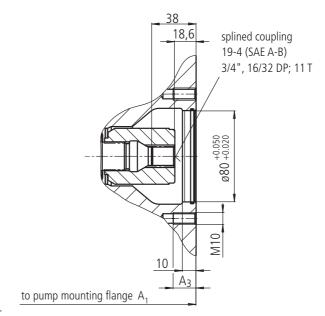


| main p.     |       | A10V  | 50 28          |                |                | A10V  | SO 45          |       |       | A10V           | 50 71          |       | -              | 410VS | 0 100          |       | -              | A10VS | 0 140 |       |
|-------------|-------|-------|----------------|----------------|----------------|-------|----------------|-------|-------|----------------|----------------|-------|----------------|-------|----------------|-------|----------------|-------|-------|-------|
| built-on p. | $A_1$ | $A_2$ | A <sub>3</sub> | A <sub>4</sub> | A <sub>1</sub> | $A_2$ | A <sub>3</sub> | $A_4$ | $A_1$ | A <sub>2</sub> | A <sub>3</sub> | $A_4$ | A <sub>1</sub> | $A_2$ | A <sub>3</sub> | $A_4$ | A <sub>1</sub> | $A_2$ | $A_3$ | $A_4$ |
| A10VSO 18   | 164   | 204   | 349            | 399            | 184            | 229   | 374            | 424   | 217   | 267            | 412            | 462   | 275            | 338   | 483            | 533   | 275            | 350   | 495   | 545   |
| A10VSO 28   | 164   | 204   | 368,5          | 410            | 184            | 229   | 393,5          | 435   | 217   | 267            | 431,5          | 473   | 275            | 338   | 502,5          | 544   | 275            | 350   | 514   | 556   |
| A10VSO 45   | _     | _     | -              | -              | 184            | 229   | 413            | 453   | 217   | 267            | 451            | 491   | 275            | 338   | 522            | 562   | 275            | 350   | 534   | 574   |
| A10VSO 71   | _     | _     | _              | _              | _              | -     | _              | -     | 217   | 267            | 484            | 524   | 275            | 338   | 555            | 595   | 275            | 350   | 567   | 609   |
| A10VSO 100* | _     | _     | _              | _              | _              | -     | _              | -     | -     | _              | _              | -     | 275            | 338   | 613            | 664   | 275            | 350   | 625   | 679   |
| A10VSO 140* | _     | _     | _              | _              | _              | _     | _              | _     | _     | _              | _              | _     | _              | _     | _              | _     | 275            | 350   | 625   | 688   |


<sup>\*</sup> Values with through drive KB6 or KB7 (splined shaft)

# **Unit Dimensions Through Drives KB2 and K51**

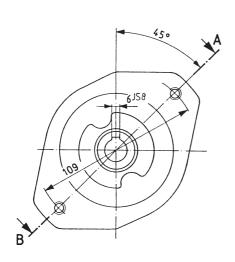
Before finishing your design, please request a certified drawing.


**Flange ISO 80, 2-hole** for built-on A10VSO 10 (splined shaft S, mounting flange A, see RD 92713) or A10VSO 18 (splined shaft S or R, mounting flange A, see RD 92712)

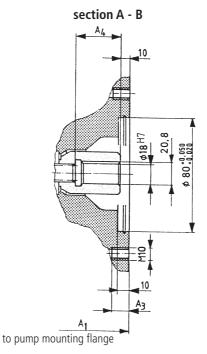
Order code KB2



| Size main pump           | A <sub>1</sub> | A <sub>3</sub> |  |
|--------------------------|----------------|----------------|--|
| <b>18</b> (see RD 92712) | 182            | 14,5           |  |
| 28                       | 204            | 16             |  |
| 45                       | 229            | 16             |  |
| 71                       | 267            | 20             |  |


section A - B




**For operation with HF-fluids** please consider RE-data sheet of builton pump.

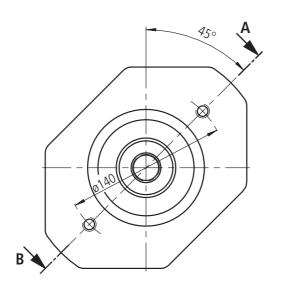
**Flange ISO 80, 2-hole** for built-on A10VSO 10 (shaft P, flange A, see RD 92713) or A10VSO 18 (shaft P, flange A, see RD 92712)

Order code K51\*



| Size main pump           | $A_1$ | $A_3$ | $A_4$ |  |
|--------------------------|-------|-------|-------|--|
| <b>18</b> (see RD 92712) | 182   | 14,5  | 33    |  |
| 28                       | 204   | 16    | 37    |  |
| 45                       | 229   | 16    | 43    |  |
| 71                       | 267   | 20    | 51    |  |
| 100                      | 338   | 20    | 55    |  |
| 140                      | 350   | 20    | 67    |  |
|                          |       |       |       |  |

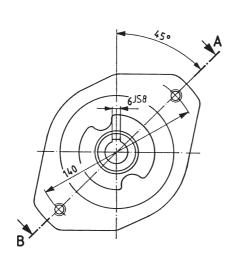



**For operation with HF-fluids** please consider RE-data sheet of builton pump.

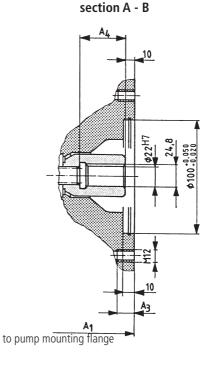
\*not for new applications, only permitted with reduced through drive torques, see page 26.

section A - B

# **Unit Dimensions Through Drives KB3 and K25**


**Flange ISO 100, 2-hole** for built-on A10VSO 28 (splined shaft S or R); Order code **KB3** 



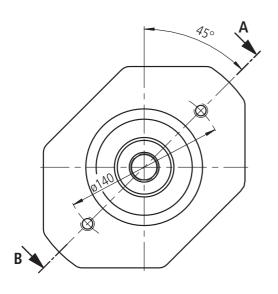

| Size main pump | A <sub>1</sub> | A <sub>2</sub> | <b>A</b> <sub>3</sub> |  |
|----------------|----------------|----------------|-----------------------|--|
| 28             | 204            | 19,2           | 14                    |  |
| 71             | 267            | 16,5           | 18                    |  |
| 100            | 338            | 17,6           | 18                    |  |
| 140            | 350            | 18,2           | 24                    |  |

splined coupling 22-4 (SAE B) 7/8", 16/32 DP; 13 T

**Flange ISO 100, 2-hole** for built-on A10VSO 28 (keyed shaft P) Order code **K25**\*



| Size main pump | A <sub>1</sub> | A <sub>3</sub> | $A_4$ |  |
|----------------|----------------|----------------|-------|--|
| 28             | 204            | 14             | 37    |  |
| 45             | 229            | 14             | 43    |  |
| 71             | 267            | 23             | 51    |  |
| 100            | 338            | 20             | 55    |  |
| 140            | 350            | 24             | 62    |  |

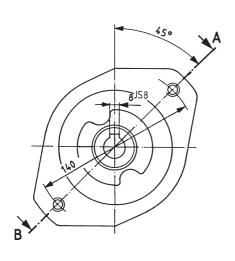



 <sup>\*</sup>not for new applications, only permitted with reduced through drive
 torques, see page 26.

# **Unit Dimensions Through Drives KB4 and K26**

Before finishing your design, please request a certified drawing.

Flange ISO 100, 2-hole for built-on A10VSO 45 (splined S or R); order code KB4




| Size main pump | $A_1$ | $A_2$ | $A_3$ |  |
|----------------|-------|-------|-------|--|
| 45             | 229   | 17,2  | 14    |  |
| 71             | 267   | 17,2  | 18    |  |
| 100            | 338   | 18,2  | 20    |  |
| 140            | 350   | 18,2  | 24    |  |

section A - B 45,9

splined coupling 25-4 (SAE B-B) 1", 16/32 DP; 15 T to pump mounting flange A

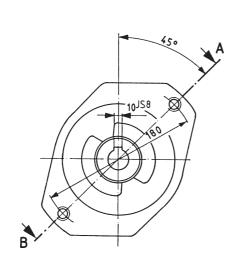
Flange ISO 100, 2-hole for built-on A10VSO 45 (keyed shaft P) order code K26\*



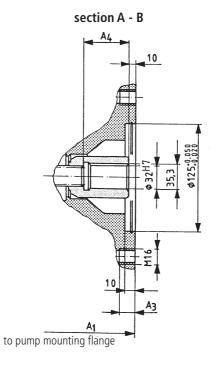
| Size main pump | A <sub>1</sub> | A <sub>3</sub> | A <sub>4</sub> |  |
|----------------|----------------|----------------|----------------|--|
| 45             | 229            | 14             | 43             |  |
| 71             | 267            | 23             | 51             |  |
| 100            | 338            | 20             | 56             |  |
| 140            | 350            | 24             | 67             |  |

# section A - B to pump mounting flange

<sup>- \*</sup>not for new applications, only permitted with reduced through drive torques, see page 26.


# **Unit Dimensions Through Drives KB5 and K27**

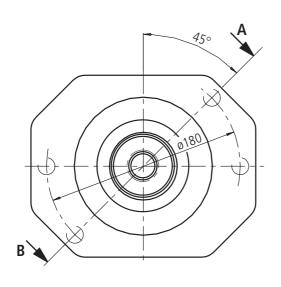
**Flange ISO 125, 2-hole** for built-on A10VSO 71 (splined shaft S or R); Order code **KB5** 

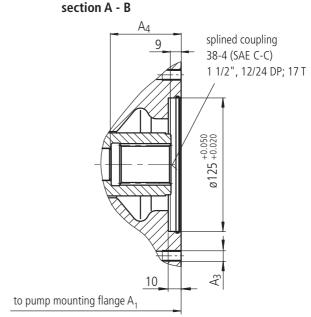



| Size main pump | A <sub>1</sub> | A <sub>2</sub> | A <sub>3</sub> |  |
|----------------|----------------|----------------|----------------|--|
| 71             | 267            | 20             | 18,5           |  |
| 100            | 338            | 20             | 25             |  |
| 140            | 350            | 21             | 32             |  |

**Flange ISO 100, 2-hole** for built-on A10VSO 71 (keyed shaft P) order code **K27**\*

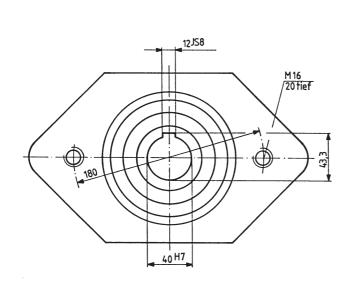


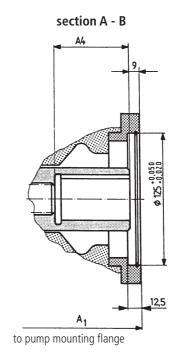

| Size main pump | A <sub>1</sub> | <b>A</b> <sub>3</sub> | A <sub>4</sub> |  |
|----------------|----------------|-----------------------|----------------|--|
| 71             | 267            | 18                    | 51             |  |
| 100            | 338            | 20                    | 54             |  |
| 140            | 350            | 24                    | 63             |  |




<sup>\*</sup>not for new applications, only permitted with reduced through drive torques, see page 26.

# **Unit Dimensions Through Drives KB6 and K37**

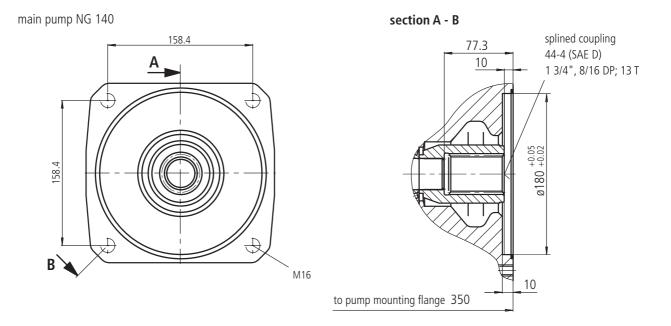

**Flange ISO 125, 2-hole** for built-on A10VSO 100 (splined shaft S); Order code **KB6** 



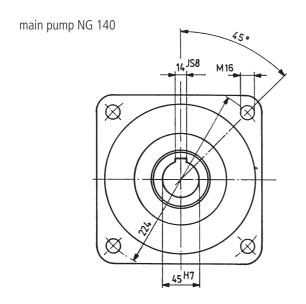


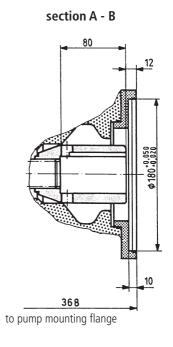

| Size main pump | A <sub>1</sub> | $A_3$        | $A_{\!\scriptscriptstyle{4}}$ |
|----------------|----------------|--------------|-------------------------------|
| 100            | 338            | M16; 25 deep | 65                            |
| 140            | 350            | M16; 32 deep | 77,3                          |

**Flange ISO 125, 2-hole** for built-on A10VSO 100 (keyed shaft P) Order code **K37\*** 







 <sup>\*</sup>not for new applications, only permitted with reduced through drive
 torques, see page 26.


# **Unit Dimensions Through Drives KB7 and K59**

**Flange ISO 180, 4-hole** for built-on A10VSO 140 (splined shaft S); Order code **KB7** 

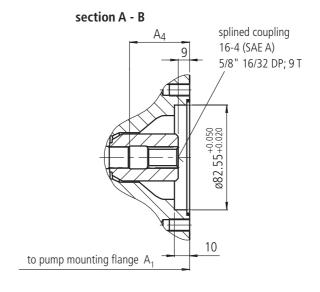


**Flange ISO 180, 4-hole** for built-on A10VSO 140 (keyed shaft P) order code **K59**\*





<sup>\*</sup>not for new applications, only permitted with reduced through drive torques, see page 26.

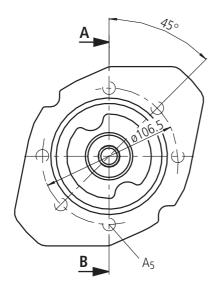

# **Unit Dimensions Through Drives K01 and K52**

Before finishing your design, please request a certified drawing.

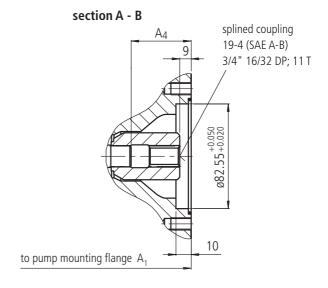
**Flange SAE 82-2 (SAE A, 2-hole)** for built-on external gear pump 1 PF2G2 (see RD 10030) or internal gear pump PGF2 (shaft J, flange U2, see RD 10213)

Order code **K01** 






| Size main pump | A <sub>1</sub> | A  | A <sub>s</sub> |
|----------------|----------------|----|----------------|
| 28             | 204            | 47 | M10; 16 deep   |
| 45             | 229            | 53 | M10; 16 deep   |
| 71             | 267            | 61 | M10; 20 deep   |
| 100            | 338            | 65 | M10; 20 deep   |
| 140            | 350            | 77 | M10; 20 deep   |


**For operation with HF-fluids** please consider RE-data sheet of builton pump.

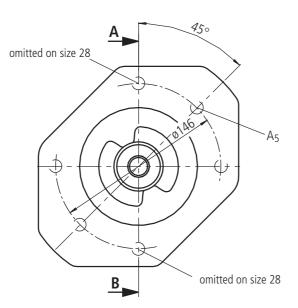
**Flange SAE 82-2 (SAE A, 2-hole)** for built-on A10VSO 10 (shaft S, flange C, see RD 92713) or A10VSO 18 (shaft S, flange C, see RD 92712)

Order code K52



| $A_1$ | $A_4$             | $A_{5}$                        |
|-------|-------------------|--------------------------------|
| 206   | 47,3              | M10; 16 deep                   |
| 229   | 53,4              | M10; 16 deep                   |
| 267   | 61,3              | M10; 20 deep                   |
| 338   | 65                | M10; 20 deep                   |
| 350   | 77                | M10; 20 deep                   |
|       | 229<br>267<br>338 | 229 53,4<br>267 61,3<br>338 65 |




**For operation with HF-fluids** please consider RE-data sheet of builton pump.

# **Unit Dimensions Through Drives K02 and K68**

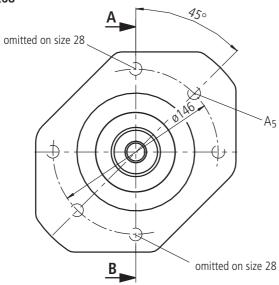
Before finishing your design, please request a certified drawing.

Flange SAE 101-2 (SAE B, 2-hole) for built-on external gear pump 1PF2G3 (see RD 10039)

Order code K02

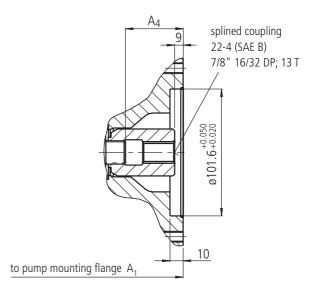


| section A - B                                     |
|---------------------------------------------------|
| splined coupling 22-4 (SAE B) 7/8" 16/32 DP; 13 T |


caction A P

Size main pump A, 28 204 47 M12; 15 deep 45 229 53 M12; 18 deep 71 267 61 M12; 20 deep 100 338 65 M12; 20 deep 140 350 77 M12; 20 deep

For operation with HF-fluids please consider RE-data sheet of builton pump.


Flange SAE 101-2 (SAE B, 2-hole) for built-on A10VO 28 (shaft S, see RD 92701) or internal gear pump PGF3 (shaft J, flange U2, see RD 10213)

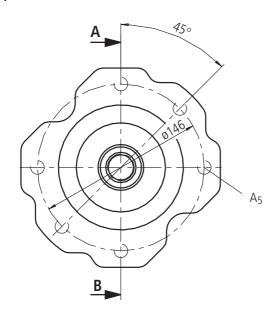
Order code K68

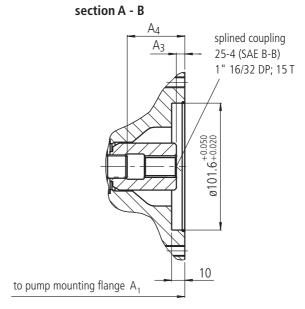


| Size main pump | A <sub>1</sub> | <b>A</b> <sub>4</sub> | A <sub>5</sub> |
|----------------|----------------|-----------------------|----------------|
| 28             | 204            | 47                    | M12; 15 deep   |
| 45             | 229            | 53                    | M12; 18 deep   |
| 71             | 267            | 61                    | M12; 20 deep   |
| 100            | 338            | 65                    | M12; 20 deep   |
| 140            | 350            | 80,8                  | M12; 20 deep   |

#### section A - B




For operation with HF-fluids please consider RE-data sheet of builton pump.

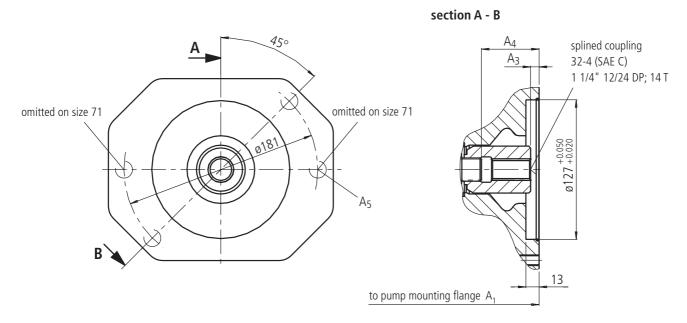

# **Unit Dimensions Through Drives K04 and K07**

Before finishing your design, please request a certified drawing.

**Flange SAE 101-2 (SAE B, 2-hole)** for built-on A10VO 45 (shaft S, see RD 92701) or internal gear pump PGH4 (shaft R, flange U2, see RD 10223)

Order code K04






| Size main pump | A <sub>1</sub> | A <sub>3</sub> | A <sub>4</sub> | <b>A</b> <sub>5</sub> |
|----------------|----------------|----------------|----------------|-----------------------|
| 28             | 204            | 9              | 47             | M12; 15 deep          |
| 45             | 229            | 9              | 53,4           | M12; 18 deep          |
| 71             | 267            | 9              | 61,3           | M12; 20 deep          |
| 100            | 338            | 10             | 65             | M12; 20 deep          |
| 140            | 350            | 8              | 77,3           | M12; 20 deep          |

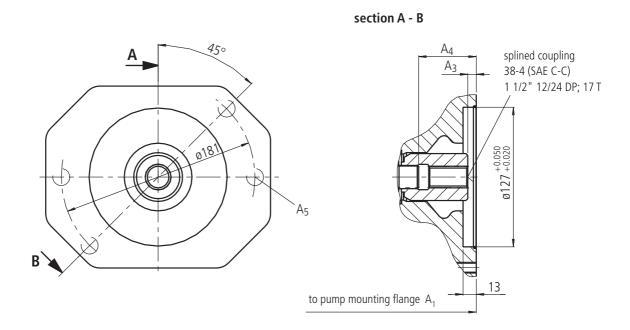
**For operation with HF-fluids** please consider RE-data sheet of builton pump.

Flange SAE 127-2 (SAE C) for built-on A10VO 71 (shaft S, see RD 92701)

Order code K07



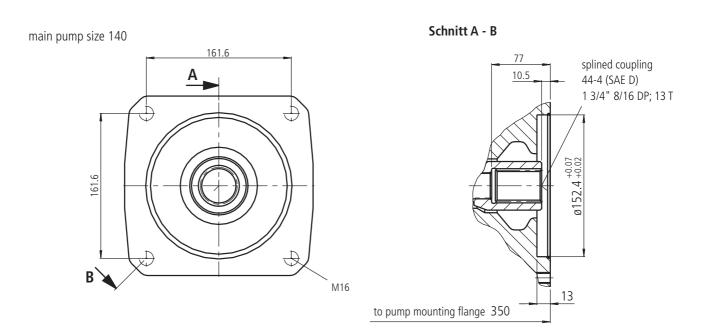
| Size main pump | A <sub>1</sub> | $A_3$ | $A_4$ | A <sub>5</sub> |
|----------------|----------------|-------|-------|----------------|
| 71             | 267            | 10    | 61,3  | M16; 18 deep   |
| 100            | 339            | 9     | 65    | M16; 20 deep   |
| •              |                |       |       |                |


For operation with HF-fluids please consider RE-data sheet of built on pump.

# Unit Dimensions Through Drives K24 and K17

Before finishing your design, please request a certified drawing.

**Flange SAE 127-2 (SAE C)** for built-on A10VO 100 (shaft S, see RD 92701) or internal gear pump PGH5 (shaft R, flange U2, see RD 10223)


Order code **K24** 

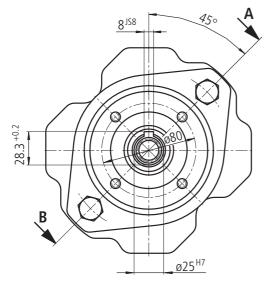


| Size main pump | A <sub>1</sub> | <b>A</b> <sub>3</sub> | $A_4$ | A <sub>5</sub>              |
|----------------|----------------|-----------------------|-------|-----------------------------|
| 100            | 338            | 8                     | 65    | M16; 20 deep, right through |
| 140            | 350            | 9                     | 77,3  | M16; 32 deep                |

**For operation with HF-fluids** please consider RE-data sheet of builton pump.

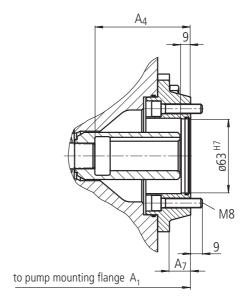
Flange SAE 152-4 (SAE D) for built-on A10VO 140 (shaft S, see RD 92701); Order code K17




**For operation with HF-fluids** please consider RE-data sheet of builton pump.

# **Unit Dimensions Through Drive K57**

Before finishing your design, please request a certified drawing.


Flange metric, 4-hole for built-on radial piston pump R4 (see RD 11263)

Order code K57



| Size main pump | A,  | $A_{a}$ | Α, |  |
|----------------|-----|---------|----|--|
| 28             | 233 | 47      | 8  |  |
| 45             | 258 | 71,5    | 8  |  |
| 71             | 283 | 68      | 8  |  |
| 100            | 354 | 70,5    | 8  |  |
| 140            | 366 | 84      | 8  |  |

section A - B



**For operation with HF-fluids** please consider RE-data sheet of builton pump.

# **Preferred Types - Shorter Delivery Times**

| Max.torque <b>T</b> 2N00 140Nm  2N00 200Nm  2N00 100Nm  2N00 245Nm  2N00 120Nm  2N00 360Nm  2N00 300Nm  2N00 2K02  2N00 2N00 |
|------------------------------------------------------------------------------------------------------------------------------|
| 2N00 200Nm<br>2N00 100Nm<br>2N00 245Nm<br>2N00 120Nm<br>2N00 360Nm<br>2N00 300Nm<br>2N00<br>2K02<br>2N00                     |
| 2N00 100Nm<br>2N00 245Nm<br>2N00 120Nm<br>2N00 360Nm<br>2N00 300Nm<br>2N00<br>2K02<br>2N00                                   |
| 2N00 245Nm<br>2N00 120Nm<br>2N00 360Nm<br>2N00 300Nm<br>2N00<br>2K02<br>2N00                                                 |
| 2N00 120Nm<br>2N00 360Nm<br>2N00 300Nm<br>2N00<br>2K02<br>2N00                                                               |
| 2N00 360Nm<br>2N00 300Nm<br>2N00<br>2K02<br>2N00                                                                             |
| 2N00 300Nm<br>2N00<br>2K02<br>2N00                                                                                           |
| 2N00<br>2K02<br>2N00                                                                                                         |
| 2K02<br>2N00                                                                                                                 |
| 2N00                                                                                                                         |
|                                                                                                                              |
| 2N00                                                                                                                         |
|                                                                                                                              |
|                                                                                                                              |
| 2N00 300Nm                                                                                                                   |
| 2N00 200Nm                                                                                                                   |
| 2N00 365Nm                                                                                                                   |
| 2N00 245Nm                                                                                                                   |
| 2N00 500Nm                                                                                                                   |
| 2N00                                                                                                                         |
| 2K02                                                                                                                         |
| 2N00                                                                                                                         |
| 2N00                                                                                                                         |
| 2N00                                                                                                                         |
|                                                                                                                              |
|                                                                                                                              |
|                                                                                                                              |
|                                                                                                                              |
|                                                                                                                              |
|                                                                                                                              |
|                                                                                                                              |
|                                                                                                                              |
|                                                                                                                              |
|                                                                                                                              |
|                                                                                                                              |
|                                                                                                                              |
|                                                                                                                              |

Please state type and ident-no. when ordering.

Brueninghaus Hydromatik GmbH Plant Horb An den Kelterwiesen 14 72160 Horb, Germany Tel. +49 (0) 74 51-92-0 Fax +49 (0) 74 51-82 21 info.brm@boschrexroth.de www.boschrexroth.com/brm © 2002 by Brueninghaus Hydromatik GmbH, 72160 Horb

All rights reserved. No part of this document may be reproduced or stored, processed, duplicated or circulated using electronic systems, in any form or by any means, without the prior written authorization of Brueninghaus Hydromatik GmbH. Violations shall give rise to claims for damages.

The data specified above only serve to describe the product. They do not indicate any specific condition or suitability for a certain application. The information provided does not release the user from the obligation of own judgement and veification. It must be remembered that our products are subject to natural wear and ageing.