

# Variable displacement pump A4VSG

**RE 92 100/11.95** 1/36 Replaces: 01.95

### closed circuit

Sizes 40...1000 Series 1 and 2 Nominal pressure 350 bar Peak pressure 400 bar



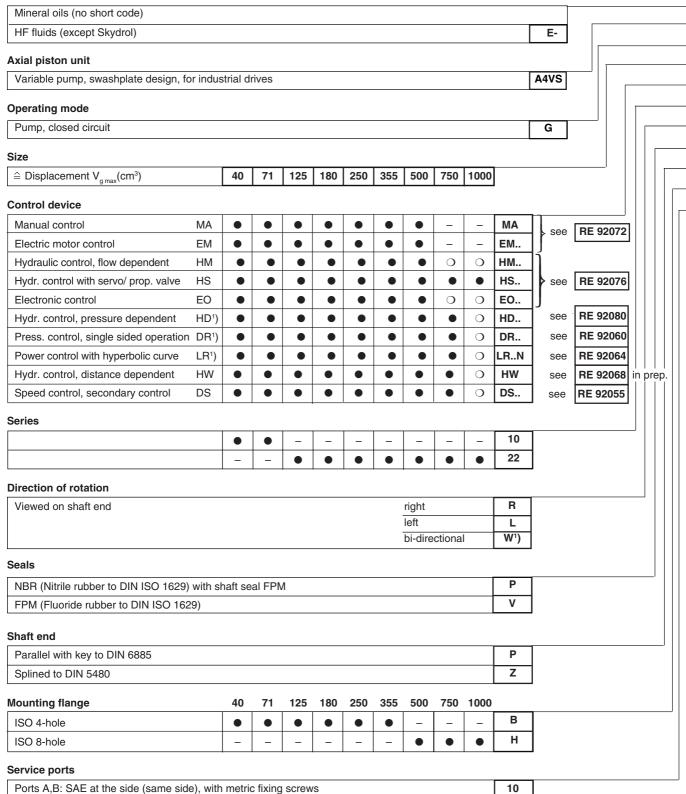
## **Contents**

| Ordering code                                           | 2, 3      |
|---------------------------------------------------------|-----------|
| Hydraulic fluid / Mounting position                     | 4         |
| Technical Data                                          | 5         |
| Unit dimensions size 40                                 | 6         |
| Unit dimensions size 71                                 | 7         |
| Unit dimensions size 125                                | 8         |
| Unit dimensions size 180                                | 9         |
| Unit dimensions size 250                                | 10        |
| Unit dimensions size 355                                | 11        |
| Unit dimensions size 500                                | 12        |
| Unit dimensions size 750                                | 13        |
| Unit dimensions size 1000                               | 14        |
| Summary controls 15                                     | 5, 16, 17 |
| Through drive                                           | 18        |
| Unit dimensions for combination pumps                   | 19, 20    |
| Dimensions through drive K31                            | 20        |
| Dimensions through drives K33 and K34                   | 21        |
| Dimensions through drives K35 and K77                   | 22        |
| Dimensions through drives K43 and K51                   | 23        |
| Dimensions through drives K25 and K26                   | 24        |
| Dimensions through drives K27 and K37                   | 25        |
| Dimensions through drives K59, K01 and K52              | 26        |
| Dimensions through drives K02 and K04                   | 27        |
| Dimensions through drives K06 and K24                   | 28        |
| Dimensions through drives K57 and K68                   | 29        |
| Dimensions through drives K99, size 40355               | 30        |
| Dimensions through drives K99, size 5001000             | 31        |
| Circuit diagram with auxiliary pump, flushing block and | filter 32 |
| Unit dimensions with auxiliary pump, flushing block and | filter 33 |
| Mounted and piped auxiliary pump H02 - H05              | 34        |
|                                                         |           |

## **Features**

The axial piston swashplate design variable displacement pump A4VSG is designed for hydrostatic transmission in closed circuit.

Flow is proportional to input speed and displacement and is infinitely variable by adjustment of the swashplate.


- slot-controlled swashplate design
- infinitely variable adjustment of displacement
- reversible flow
  - permissible nominal pressure 350 bar
- low noise level
- long service life
- drive shaft capable of absorbing axial and radial loads
- high power/weight ratio
- modular design
- short control times
- through drive and tandem pumps possible
- pump swivel angle indicator
- installation position optional
- operation on HF fluids possible with reduced operating parameters

For description of control and regulating devices see separate RE sheets

RE 92055, RE 92060, RE 92064 RE 92072, RE 92076, RE 92080

## Ordering code

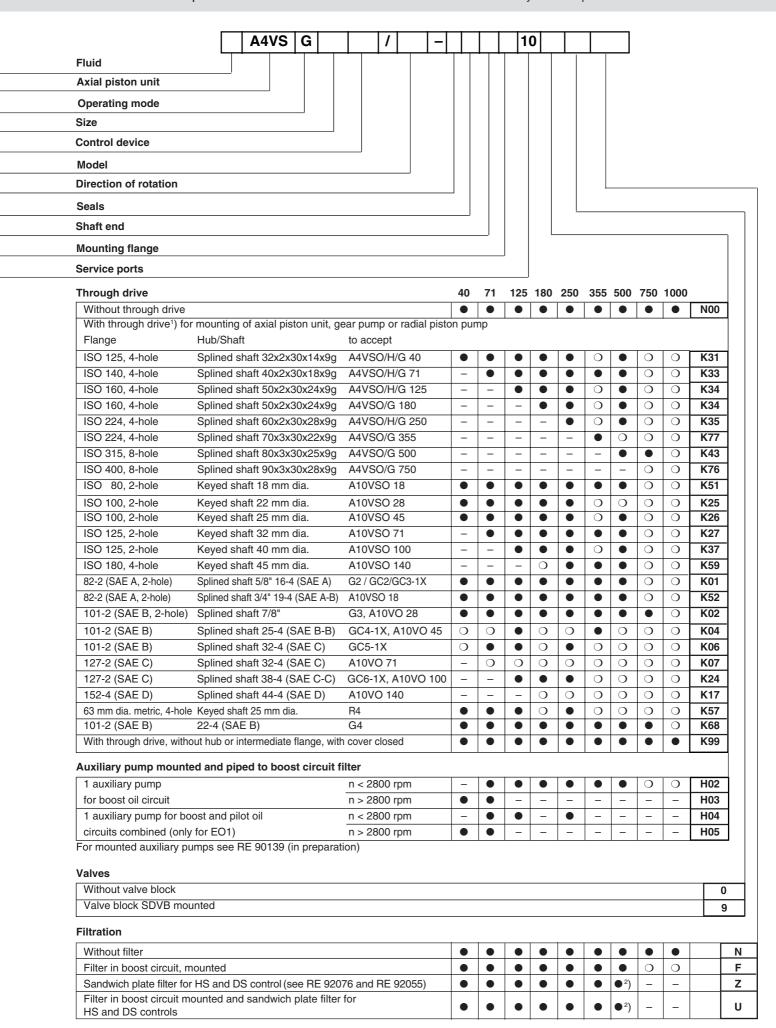




#### Through drive / tandem pump

If a second Brueninghaus pump is factory mounted, both ordering codes must be combined with "+". Ordering code 1st pump + ordering code 2nd pump

Ordering example: A4VSG 125 EO1/22R - PPB10K339F + A4VSG 71 HM1/10R - PZB10N000N


If a gear pump or radial piston pump is factory mounted, please consult us.

<sup>1)</sup> Bi-directional rotation not always possible, please note separate RE sheets.

<sup>2)</sup> Size 500 only available for DS control, for HS/HS1 see RE 92076

O = in preparation

<sup>–</sup> not available



## **Fluid**

For extensive information on the selection of fluids and for application conditions, please consult our data sheets RE 90220 (mineral oils), RE 90221 (environmentally acceptable fluids) or RE 90223 (HF fluids) before proceeding with the design stage. When operating with environmentally acceptable or HF fluids reduced operating conditions may apply.

#### Operating viscosity range

In order to obtain optimum efficiency and service life, we recommend that the operating viscosity (at operating temperature) be selected from within the range:

$$v_{opt}$$
 = operating viscosity 16...36 mm<sup>2</sup>/s

referred to the closed loop temperature.

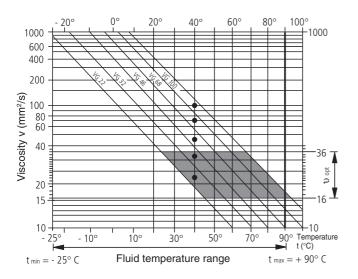
#### **Viscosity limits**

The limiting values for viscosity are as follows:

 $v_{min} = 10 \text{ mm}^2/\text{s}$ 

short term at a maximum permissible drain temperature of 90° C.

 $v_{max} = 1000 \text{ mm}^2/\text{s}$ 


short term on cold start.

### Notes on the selection of hydraulic fluid

In order to select the correct fluid, it is necessary to know the operating temperature in the circuit (closed loop), in relation to the ambient temperature.

The hydraulic fluid should be selected so that within the operating temperature range the operating viscosity lies within the optimum range  $(n_{opt})$ , (see shaded section of selection diagram). We recommend that the highest possible viscosity range be chosen in each case.

### Selection diagram



Example: At an ambient temperature of  $X^{\circ}$  C the operating temperature is  $60^{\circ}$  C. Within the optimum operating viscosity range ( $n_{opt}$ ; shaded area) this corresponds to viscosity ranges VG 46 or VG 68. VG 68 should be selected.

Important: The leakage oil (case drain oil) temperature is influenced by pressure and speed and is always higher than the circuit temperature. However at no point in the circuit may the temperature exceed  $90^{\circ}$  C.

If it is not possible to comply with the above conditions because of extreme operating parameters or high ambient temperatures, please consult us.

#### Flushing of the bearings

With the following operating conditions the bearings should be flushed to ensure correct functioning over a long period:

- with special fluids (not mineral) due to limited lubricity and a narrow operating temperature range
- when operating with mineral oils in limited conditions of temperature and viscosity
- with vertical installation (drive shaft facing upwards) flushing of the bearings is recommended for lubrication of the front bearing and shaft sealing ring.

Flushing of the bearings is carried out via port "U" in the vicinity of the front flange of the variable pump. The flushing oil flows through the front bearing and out with the pump case drain oil at the drain port.

The following quantities are required for flushing the various sizes:

| Size                  | 40 | 71 | 125 | 180 | 250 | 355 | 500 | 750 | 1000 |
|-----------------------|----|----|-----|-----|-----|-----|-----|-----|------|
| Q <sub>sp</sub> L/min | 3  | 4  | 5   | 7   | 10  | 15  | 20  | 30  | 40   |

For the given flushing quantities there will be a pressure difference of approx. 2 bar between port "U" (including fittings) and the case drain oil chamber.

#### Filtration of fluid (axial piston unit)

In order to ensure correct functioning of the unit, a minimum level of cleanliness to NAS 16389 class 9

SAE class 6

ISO/DIS 4406 class 18/15 is necessary.

This is achievable for example with a filter element

Type...D 020...(see RE 31278).

This gives a filter quotient of

$$\beta_{20} \ge 100$$

If a filter for the boost circuit is factory mounted (Ordering code F), depending on the size of the axial piston unit the following filters are installed, fitted with opto-electrical clogging indicator as standard:

 Sizes 40 and 71:
 LFBN/HC60G20D1.0/24/V

 Sizes 125, 180 and 250:
 LFBN/HC110G20D1.0/24/V

 Size 355:
 LFBN/HC240G20D1.0/L24/V

 Size 500:
 LFBN/HC330G20D1.0/L24/V

For further details see RE 31278.

Temperature range (cf. selection diagram)

 $t_{min} = -25^{\circ} \text{ C}$  $t_{max} = +90^{\circ} \text{ C}$ 

## Installation instructions

### Installation position:

Optional. The pump housing must be filled with hydraulic fluid when commissioning and during operation.

In order to minimise noise levels, all connecting piping (suction, pressure, case drain oil ports) must be disconnected from the tank by means of flexible elements.

The use of check valves in the case drain oil line is to be avoided. They, however, may be used in certain cases after consultation with us.

## **Technical data**

(applicable for operation with mineral oils)

#### Operating pressure range - inlet side

\_\_\_\_16 bar Recommended boost pressure pso Recommended boost pressure with common auxiliary pump for boost and pilot oil circuits (EO1) p<sub>Sp</sub> \_\_\_\_\_25 bar Maximum boost pressure – auxiliary pump max. pressure P for MA-, EM-, HM-, HS-, EO-, DS-settings \_\_\_ for HD-, HW-settings and LR.N- and DR-control \_ Auxiliary pumps - inlet pressure Suction pressure  $p_{s,min}(v = 10...300 \text{ mm}^2/\text{s}) \ge 0.7 \text{ bar absolute}$ 

### Operating pressure range - outlet side

(pressures to DIN 24312) Pressure at port A or B Nominal pressure p<sub>N</sub>\_ 350 bar Peak pressure  $p_{max}$  \_\_\_\_ 400 bar

#### Case drain pressure

The maximum permissible case drain pressure (housing pressure) is dependent on speed (see diagram).



Max. case drain pressure (housing pressure)

4 bar

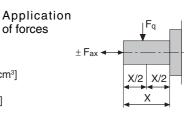
of forces

These are approximate values. Under certain operating conditions a reduction in these values may be necessary.

## **Table of values** (theoretical values, without considering $\eta_{mh}$ and $\eta_{v}$ ; values rounded)

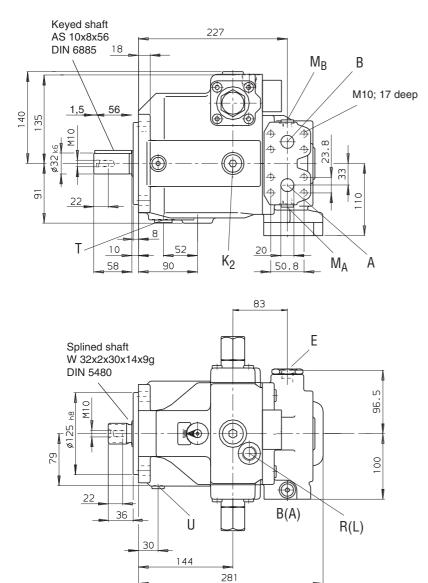
| Size                                         |                              |                       |                 | 40     | 71     | 125  | 180   | 250    | 355  | 500    | 750  | 1000 |
|----------------------------------------------|------------------------------|-----------------------|-----------------|--------|--------|------|-------|--------|------|--------|------|------|
| Displacement                                 |                              | V <sub>g max</sub>    | cm <sup>3</sup> | 40     | 71     | 125  | 180   | 250    | 355  | 500    | 750  | 1000 |
| Max. speed                                   |                              | n <sub>max</sub>      | rpm             | 3700   | 3200   | 2600 | 2400  | 2200   | 2000 | 1800   | 1600 | 1600 |
| Max. flow                                    | at n <sub>max</sub>          | $Q_{\text{max}}$      | L/min           | 148    | 227    | 325  | 432   | 550    | 710  | 900    | 1200 | 1600 |
|                                              | at n <sub>E</sub> = 1500 rpm |                       | L/min           | 60     | 107    | 186  | 270   | 375    | 533  | 750    | 1125 | 1500 |
| Max. power                                   | at n <sub>o max</sub>        | P <sub>o max</sub>    | kW              | 86     | 132    | 190  | 252   | 321    | 414  | 525    | 700  | 933  |
| $(\Delta p = 350 \text{ bar})$               | at n <sub>E</sub> = 1500 rpm |                       | kW              | 35     | 62     | 109  | 158   | 219    | 311  | 438    | 656  | 875  |
| Max. torque ( $\Delta p = 350 \text{ bar}$ ) | at V <sub>g max</sub>        | T <sub>max</sub>      | Nm              | 223    | 395    | 696  | 1002  | 1391   | 1976 | 2783   | 4174 | 5565 |
| Torque (∆p = 100 bar)                        | at V <sub>g max</sub>        | T                     | Nm              | 64     | 113    | 199  | 286   | 398    | 564  | 795    | 1193 | 1590 |
| Moment of inertia about drive axis           |                              | J                     | kgm²            | 0,0049 | 0,0121 | 0,03 | 0,055 | 0,0959 | 0,19 | 0,3325 | 0,66 | 1,20 |
| Filling volume                               |                              |                       | L               | 2      | 2,5    | 5    | 4     | 10     | 8    | 14     | 19   | 27   |
| Approx. weight (pump with EO1 co             | ontrol and valve block       | x) m                  | kg              | 47     | 60     | 100  | 114   | 214    | 237  | 350    | 500  | 630  |
| Max. axial force                             |                              | ± F <sub>ax max</sub> | N               | 600    | 800    | 1000 | 1400  | 1800   | 2000 | 2000   | 2200 | 2200 |
| Max. radial force                            |                              | F <sub>q max</sub>    | N               | 1000   | 1200   | 1600 | 2000  | 2000   | 2200 | 2500   | 3000 | 3500 |

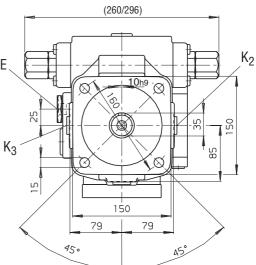
#### **Determination of size**


Output flow [L/min]  $T = \frac{1,59 \cdot V_g \cdot \Delta p}{100 \cdot \eta_{mh}}$  [Nm]  $P = \frac{2\pi \cdot T \cdot n}{60000} = \frac{T \cdot n}{9549} = \frac{Q \cdot \Delta p}{600 \cdot \eta_t}$  [kW] Torque Power

= geometr. displacement [cm<sup>3</sup>] per revolution

= Differential pressure [bar] = Speed [rpm] n


= Volumetric efficiency  $\eta_{v}$ 


 $\eta_{\mathsf{mh}}$ = Mechanical-hydraulic efficiency = Total efficiency  $[\eta_t = \eta_v \bullet \eta_{mh}]$ 



## **Unit dimensions Size 40**

(not including control)





**Ports** 

U

 $\begin{array}{ll} \text{A, B} & \text{Pressure ports} \\ \text{M}_{\text{A}}, \text{M}_{\text{B}} & \text{Gauge ports} \\ \text{T} & \text{Oil drain} \end{array}$ 

T Oil drain
E Boost port

K<sub>2</sub>, K<sub>3</sub> Housing flushing ports
R(L) Oil filling + bleeding ports
For exact position see spec.

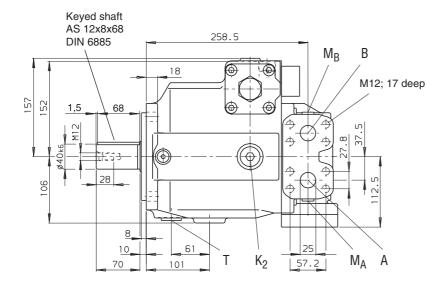
for relevant control device

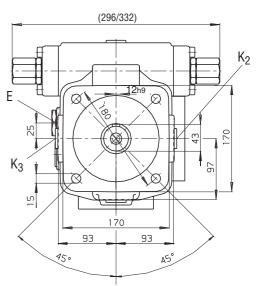
Flushing port

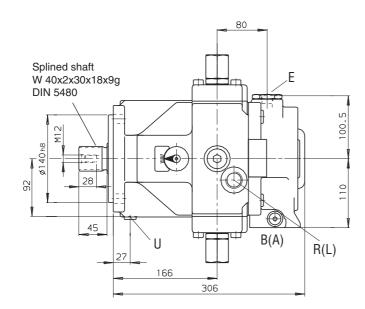
SAE 3/4" (high pressure range)

M14x1,5 (plugged)

M22x1,5 (plugged)


M18x1,5


M22x1,5 (plugged)


M22x1,5;

## **Unit dimensions Size 71**

(not including control)







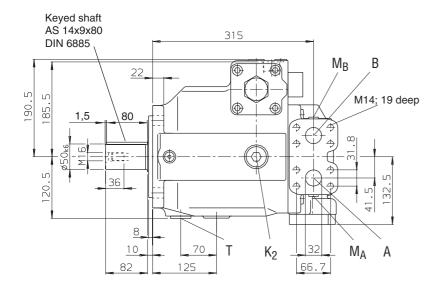
## **Connections**

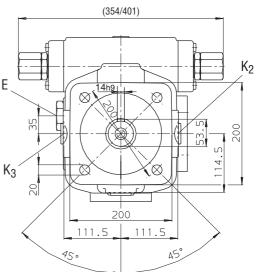
U

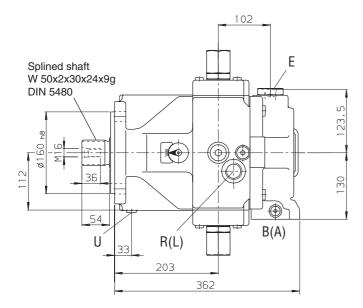
A, B Pressure ports  $M_A, M_B$ Gauge ports Т Oil drain Ε Boost port

K<sub>2</sub>, K<sub>3</sub> Housing flushing ports R(L) Oil filling + bleeding ports For exact position see spec.

for relevant control device Flushing port


SAE 1" (high pressure range)


M14x1,5 (plugged) M27x2 (plugged) M18x1,5 M27x2 (plugged)


M27x2;

## **Unit dimensions Size 125**

(not including control)







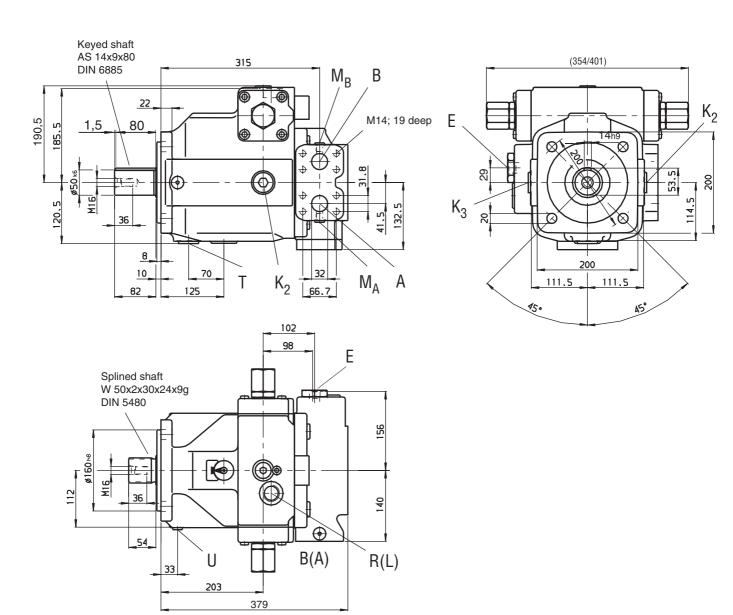
## **Connections**

U

A, B Pressure ports  $M_A, M_B$ Gauge ports Т Oil drain Е Boost port

K, , Κ<sub>3</sub> Housing flushing ports R(L) Oil filling + bleeding ports

For exact position see spec. for relevant control device Flushing port


SAE 1 1/4" (high pressure range) M14x1,5 (plugged)

M33x2 (plugged) M22x1,5 M33x2 (plugged)

M33x2;

## **Unit dimensions Size 180**

(not including control)



## Connections

 $\begin{array}{ll} \text{A, B} & \text{Pressure ports} \\ \text{M}_{\text{A}}, \text{M}_{\text{B}} & \text{Gauge ports} \\ \text{T} & \text{Oil drain} \end{array}$ 

E Boost port

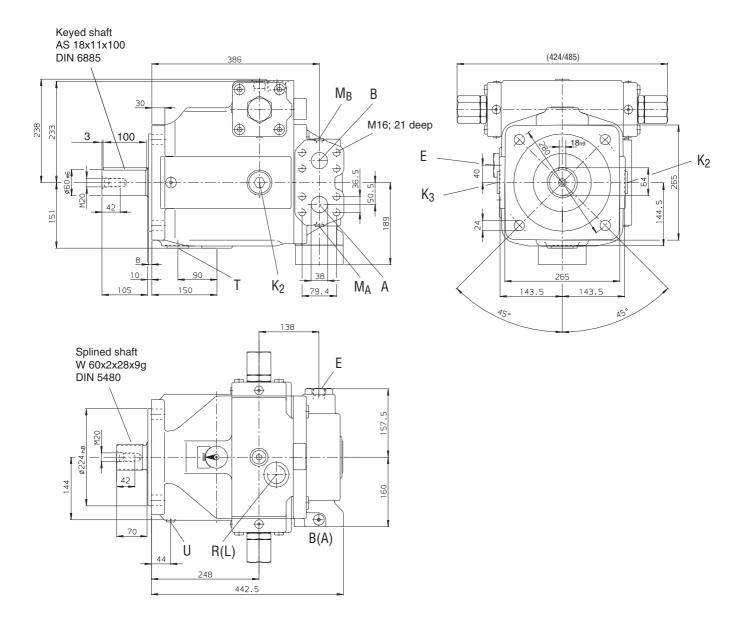
K<sub>2</sub>, K<sub>3</sub> Housing flushing ports R(L) Oil filling + bleeding ports

For exact position see spec. for relevant control device

U Flushing port

SAE 1 1/4" (high pressure range)

M14x1,5 (plugged) M33x2 (plugged)


M22x1,5

M33x2 (plugged)

M33x2;

## **Unit dimensions Size 250**

(not including control)



#### Connections

A, B Pressure ports  $M_A, M_B$ Gauge ports Т Oil drain Ε Boost port

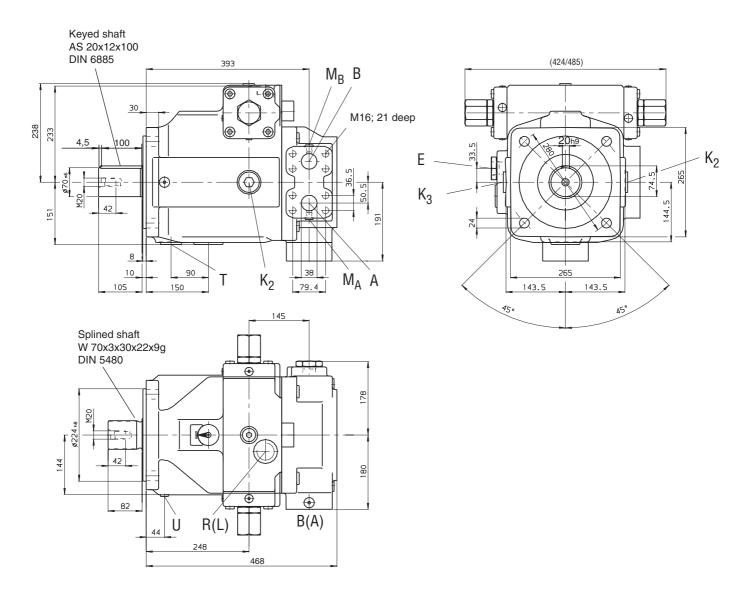
-K<sub>2</sub>, K R(L) , Κ<sub>3</sub> Housing flushing ports Oil filling + bleeding ports

For exact position see spec.

for relevant control device

U Flushing port SAE 1 1/2" (high pressure range)

M14x1,5 (plugged) M42x2 (plugged)


M27x2

M42x2 (plugged)

M42x2;

## **Unit dimensions Size 355**

(not including control)



#### **Connections**

U

 $\begin{array}{ll} \text{A, B} & \text{Pressure ports} \\ \text{M}_{\text{A}}, \text{M}_{\text{B}} & \text{Gauge ports} \end{array}$ 

T Oil drain
E Boost port

K<sub>2</sub>, K<sub>3</sub> Housing flushing ports R(L) Oil filling + bleeding ports

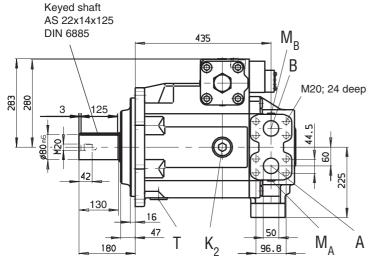
for relevant control device

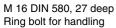
For exact position see spec.

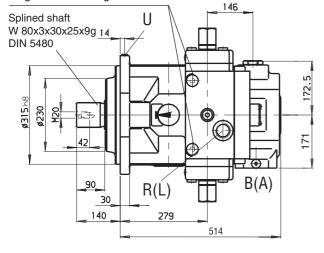
Flushing port

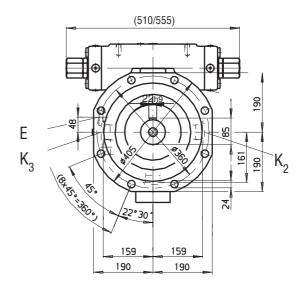
SAE 1 1/2" (high pressure range)

M14x1,5 (plugged) M42x2 (plugged)


M33x2 "


M42x2 (plugged)


M42x2;


## **Unit dimensions Size 500**

(not including control)









#### **Connections**

U

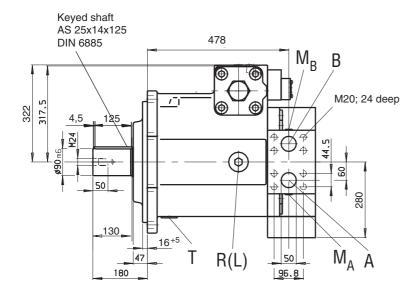
A, B Pressure ports  $M_A, M_B$ Gauge ports T Oil drain Ε Boost port

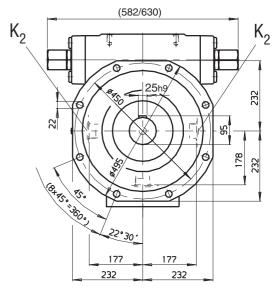
K<sub>2</sub>, K<sub>3</sub> Housing flushing ports R(L) Oil filling + bleeding ports

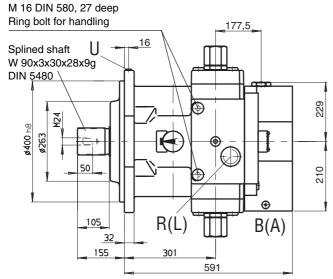
> for relevant control device Flushing port

For exact position see spec.

SAE 2" (high pressure range)


M18x1,5 (plugged) M48x2 (plugged) M33x2


M48x2 (plugged)


M48x2;

## **Unit dimensions Size 750**

(not including control)







#### **Connections**

 $\begin{array}{ll} \text{A, B} & \text{Pressure ports} \\ \text{M}_{\text{A}}, \text{M}_{\text{B}} & \text{Gauge ports} \\ \text{T} & \text{Oil drain} \end{array}$ 

E Boost port

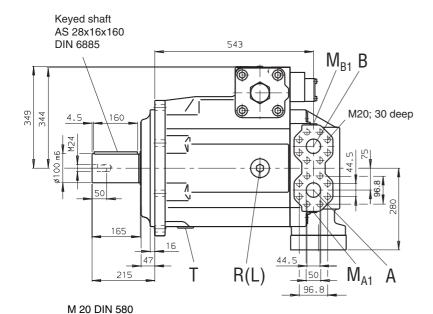
 ${\rm K_2,\,K_3}\atop {\rm R(L)}$  Housing flushing ports Oil filling + bleeding ports

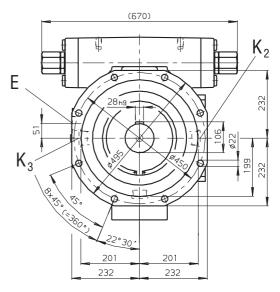
For exact position see spec. for relevant control device

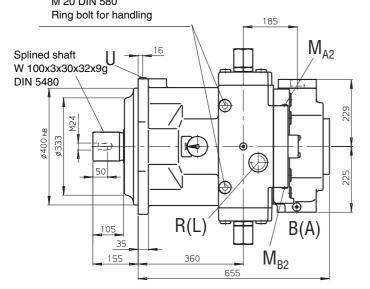
U Flushing port

SAE 2" (high pressure range)

M18x1,5 (plugged) M48x2 (plugged)


M48x2


M48x2 (plugged)


M48x2;

## **Unit dimensions Size 1000**

(not including control)







# Connections

U

A, B Pressure ports

 $M_{A1}, M_{B1}$   $M_{A2}, M_{B2}, M_{P}$ Gauge ports operating pressure

Gauge ports control pressure

Т Oil drain

Boost port

E K<sub>2</sub>, K<sub>3</sub> R(L) Housing flushing ports

Oil filling + bleeding ports For exact position see spec.

for relevant control device Flushing port

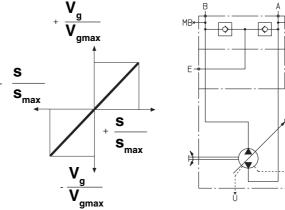
SAE 2" (high pressure range)

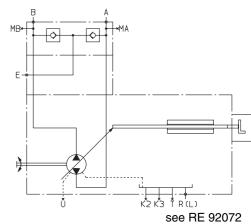
M18x1,5 (plugged)

M14x1,5

M48x2 (plugged)

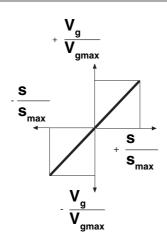
M48x2

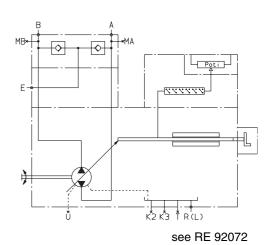

M48x2 (plugged)


M48x2;

## **Summary controls**

## Manual control MA


Stepless adjustment of displacement by means of handwheel.



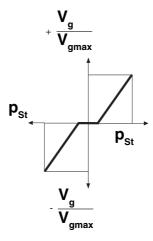


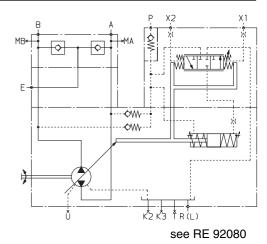

## Electric motor control EM

Stepless adjustment of displacement by means of electric motor with control spindle. With a programmed sequence control various intermediate displacements can be selected by means of built-on limit switches or potentiometer.






# Hydraulic control **HD** pilot pressure dependent

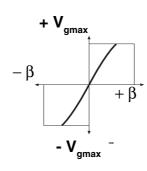

Stepless adjustment of pump displacement dependent on pilot pressure. The displacement is proportional to the pilot pressure.

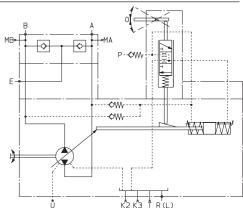
Optional:

Pilot characteristics (HD1, HD2, HD3) Pressure control (HD.A, HD.B, HD.D) Remote pressure control (HD.GA, HD.GB, HD.G) Power control (HD1P)

Electr. pilot pressure control (HD1T)







# Hydraulic control **HW** path dependent

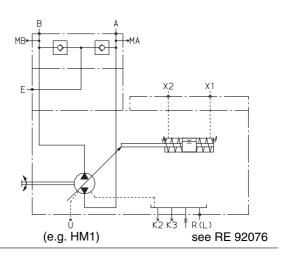
Stepless adjustment of pump displacement proportional to sine  $\beta$  of the angle of the control lever.

Optional:

with hyperbolic power control (HWP) for single sided operation






see RE 92068 (in prep.)

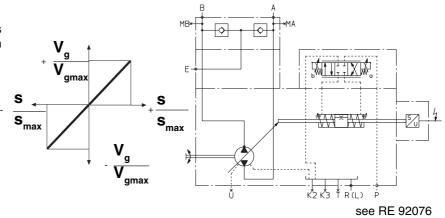
## Hydraulic displacement control HM 1/2/3 control volume dependent

The displacement volume of the pump is infinitely adjustable, depending on the control volume in ports  $X_1$  and  $X_2$ .

Application: -2 point control

- basic control device for servo or proportional control

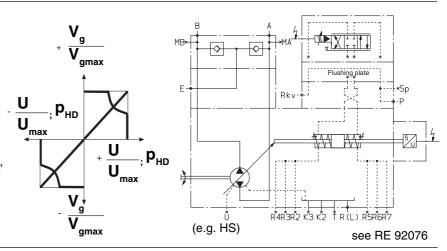



# Hydraulic displacement control EO 1/2

Stepless adjustment of displacement is achieved by means of a proportional valve with electrical feedback of swivel angle.

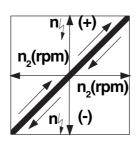
#### **Electronic control**

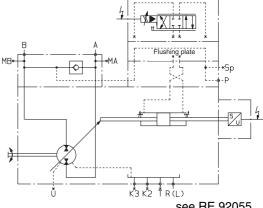
Optional:


Short circuit valve (EO1K, EO2K) Without valve (EO1E, EO2E)



## Hydraulic displacement control **HS, HS1, HS3** with servo or proportional valve


Stepless adjustment of displacement is achieved by means of a servo or proportional valve with electrical feedback of swivel angle. **Electronic control** 


Optional: Servo valve (HS/ HS1), proportional valve (HS3), short circuit valve (HS1K, HS3K), without valve (HSE, HS1E, HS3E). The HS3P control is fitted with a built-on pressure transducer for additional electr. adjustable pressure and power control.



## Speed control DS1 secondary controlled

Speed control DS1 controls the secondary unit (the motor) in such a way that this motor supplies suffient torque to maintain the required speed. Connected up to a system with constant pressure, this torque is proportional to displacement and thus also to the swivel angle.



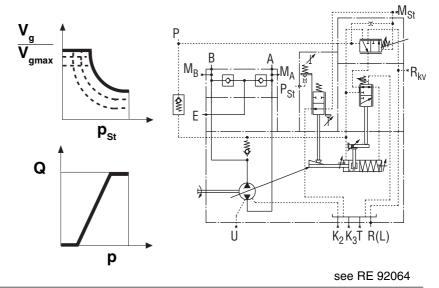


see RE 92055

## **Summary controls**

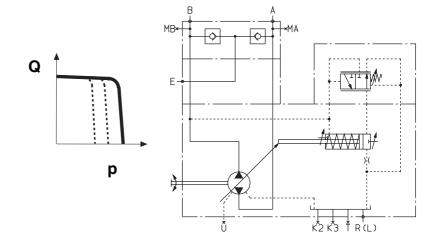
# Hydraulic control LR.N pilot pressure dependent initial position $V_{\rm g\,min}$

Single sided operation


With overriding power control.

Displacement is proportional to pilot pressure in  $P_{\text{st}}$ . The additional hyperbolic power control overrides the pilot pressure signal and holds the preset power constant.

Optional:

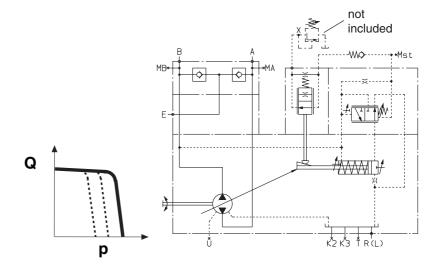

Pressure control (LR2DN), remote control (LR2GN)

Power characteristic, remote control (LR3N, LR3DN, LR3GN)



## Pressure control DR

Single sided operation
Maintains a constant pressure in a hydraulic system
Setting range 20 – 350 bar
Optional:
Remote control (DRG)




see RE 92060

# Pressure control for parallel operation **DP**

Single sided operation Suitable for pressure control of multiple axial piston pumps A4VSG in parallel operation. Optional:

Displacement control (DPF)



# Through drive

Axial pistons units A4VSG can be supplied with through drive, as indicated in the ordering code on page 3.

It is recommended that no more than three individual pumps are coupled in series.

Included in the supply are:

Coupling, fixing screws, seal and an intermediate flange (if required).

#### **Combination pumps**

Two or more independent circuits are available to the user when combination pumps are fitted.

1. If the combination pump consists of 2 Brueninghaus units and if these are to be supplied assembled, the single type codes should be quoted, joined by "+" . Ordering example:

A4VSG 125 EO1/22R - PPB10K339F + A4VSG 71 HM1/10R - PZB10N000N

- 1.1 If a gear pump or radial piston pump is to be factory fitted as a combination pump, please refer to RE 90139 (in preparation). This data sheet lists the various pump combinations with the type code of the first pump.
- 2. Assembled and piped auxiliary pumps (see page 32) Depending on the application, various auxiliary pumps and/or piping are available.

Ordering example:

A4VSG 125 EO1/22R - PPB10H029F

A4VSG with piped auxiliary pump for boost circuit.


A4VSG 71EO1/10R - PPB10 H059F

A4VSG with one piped auxiliary pump for a common boost and pilot oil circuit, at speeds of n > 2800 rpm.

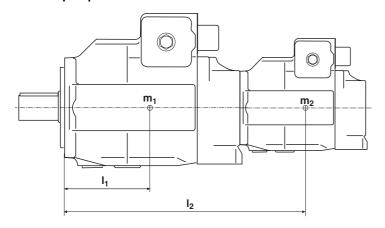
It is recommended that no more than three individual pumps are coupled in series.

When designing a combination pump using the same sized pumps (e.g.125 + 125) in combination with control device HD.P, HD.T, HD.U, please consult us.

## Permissible through drive torque



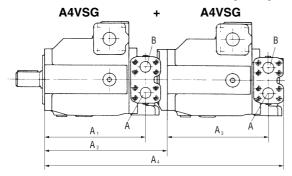
#### Splined shaft


| Siz | ze                  |                        |       | 40    | 71   | 125   | 180    | 250   | 355  | 500  | 750  |
|-----|---------------------|------------------------|-------|-------|------|-------|--------|-------|------|------|------|
|     | x. perm.<br>imp 1 + | througl                | h dri | ve to | rque | at sh | naft p | ump 1 | 1    |      |      |
| pu  | mp 2)               | T <sub>total max</sub> | Nm    | 446   | 790  | 1392  | 2004   | 2782  | 3952 | 5566 | 8348 |
| 1   | Through             | $T_{D1max}$            | Nm    | 223   | 395  | 696   | 1002   | 1391  | 1976 | 2783 | 4174 |
|     | torque              | $T_{D2max}$            | Nm    | 223   | 395  | 696   | 1002   | 1391  | 1976 | 2783 | 4174 |
| 2   | Through             | T <sub>D1max</sub>     | Nm    | 223   | 395  | 696   | 1002   | 1391  | 1976 | 2783 | 4174 |
| _   | torque              | Т                      | Nm    | 223   | 395  | 696   | 1002   | 1391  | 1976 | 2783 | 4174 |

#### Keyed shaft

| Siz | ze .                 |                        |       | 40    | 71   | 125   | 180    | 250              | 355  | 500  | 750  |
|-----|----------------------|------------------------|-------|-------|------|-------|--------|------------------|------|------|------|
|     | ıx. perm.<br>ımp 1 + | throug                 | h dri | ve to | rque | at sh | naft p | ump <sup>-</sup> | 1    |      |      |
| pu  | mp 2)                | T <sub>total max</sub> | Nm    | 380   | 700  | 1392  | 1400   | 2300             | 3557 | 5200 | 7513 |
| 1   | Through              | $T_{D1max}$            | Nm    | 223   | 395  | 696   | 1002   | 1391             | 1976 | 2783 | 4174 |
|     | torque               | T <sub>D2max</sub>     | Nm    | 157   | 305  | 696   | 398    | 909              | 1581 | 2417 | 3339 |
| 2   | Through              | T <sub>D1max</sub>     | Nm    | 157   | 305  | 696   | 398    | 909              | 1581 | 2417 | 3339 |
| _   | torque               | Т                      | Nm    | 223   | 395  | 696   | 1002   | 1391             | 1976 | 2783 | 4174 |

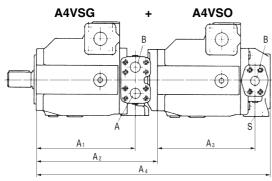
Nm 223 395 696 1002 1391 1976 2783 4174


#### Permissible bending moment referred to mounting flange of main pump



$$m_1, m_2$$
 [kg] Weight of pump  
Offset of c of g
$$T_m = m_1 \cdot l_1 \cdot \frac{1}{102} + m_2 \cdot l_2 \cdot \frac{1}{102}$$
 [Nm]

| Size                                                     |                    |    | 40   | 71   | 125  | 180  | 250  | 355  | 500   | 750   |
|----------------------------------------------------------|--------------------|----|------|------|------|------|------|------|-------|-------|
| Max.bending moment                                       | T <sub>m per</sub> | Nm | 1800 | 2000 | 4200 | 4200 | 9300 | 9300 | 15600 | 19500 |
| Max. bending ment for dynam. accel. of 10 g ≘ 98,1 m/sec | po.                | Nm | 180  | 200  | 420  | 420  | 930  | 930  | 1560  | 1950  |
| Weight                                                   | m                  | kg | 47   | 60   | 100  | 114  | 214  | 237  | 350   | 500   |
| Offset of c of g                                         | I <sub>1</sub>     | mm | 120  | 140  | 170  | 180  | 210  | 220  | 230   | 260   |

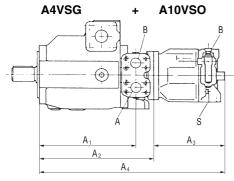

# Unit dimensions for combination pumps



| Main p.   |                | A4VS  | G 40  |       |                | A4VS             | G 71  |       |                | A4VS           | G 125 | 5     |                | A4VS           | G 180 | )                   |                | A4VS  | G 250 | ,                  |
|-----------|----------------|-------|-------|-------|----------------|------------------|-------|-------|----------------|----------------|-------|-------|----------------|----------------|-------|---------------------|----------------|-------|-------|--------------------|
| Aux p.    | A <sub>1</sub> | $A_2$ | $A_3$ | $A_4$ | A <sub>1</sub> | $\mathbf{A}_{2}$ | $A_3$ | $A_4$ | A <sub>1</sub> | A <sub>2</sub> | $A_3$ | $A_4$ | A <sub>1</sub> | A <sub>2</sub> | $A_3$ | $\mathbf{A}_{_{4}}$ | A <sub>1</sub> | $A_2$ | $A_3$ | $  \mathbf{A}_4  $ |
| A4VSG 40  | 227            | 288   | 227   | 569   | 259            | 316              | 227   | 597   | 315            | 347            | 227   | 628   | 315            | 371            | 227   | 652                 | 386            | 431   | 227   | 712                |
| A4VSG 71  | _              | _     | _     | _     | 259            | 316              | 259   | 623   | 315            | 373            | 259   | 680   | 315            | 397            | 259   | 703                 | 386            | 431   | 259   | 737                |
| A4VSG 125 | _              | _     | _     | _     | _              | _                | _     | _     | 315            | 379            | 315   | 742   | 315            | 403            | 315   | 766                 | 386            | 469   | 315   | 832                |
| A4VSG 180 | _              | _     | -     | _     | _              | _                | _     | _     | _              | _              | _     | -     | 315            | 403            | 315   | 782                 | 386            | 469   | 315   | 848                |
| A4VSG 250 | -              | _     | _     | _     | _              | _                | _     | _     | _              | _              | _     | _     | _              | _              | -     | -                   | 386            | 469   | 386   | 912                |

| Main p.   |                | A4VS  | G 355 | ;     |                | A4VS           | G 500 | )     |                | A4VS           | )     |       |
|-----------|----------------|-------|-------|-------|----------------|----------------|-------|-------|----------------|----------------|-------|-------|
| Aux p.    | A <sub>1</sub> | $A_2$ | $A_3$ | $A_4$ | A <sub>1</sub> | A <sub>2</sub> | $A_3$ | $A_4$ | A <sub>1</sub> | A <sub>2</sub> | $A_3$ | $A_4$ |
| A4VSG 40  | 393            |       | 227   |       | 435            | 505            | 227   | 786   | 467            |                | 227   |       |
| A4VSG 71  | 393            | 460   | 259   | 766   | 435            | 505            | 259   | 811   | 467            |                | 259   |       |
| A4VSG 125 | 393            |       | 315   |       | 435            | 505            | 315   | 868   | 467            |                | 315   |       |
| A4VSG 180 | 393            |       | 315   |       | 435            | 505            | 315   |       | 467            |                | 315   |       |
| A4VSG 250 | 393            |       | 386   |       | 435            | 541            | 386   | 982   | 467            |                | 386   |       |
| A4VSG 355 | 393            |       | 393   |       | 435            |                | 393   |       | 467            |                | 393   |       |
| A4VSG 500 | _              | _     | _     | _     | 435            | 590            | 435   | 1095  | 467            | 640            | 435   | 1145  |
| A4VSG 750 | _              | _     | _     | _     | _              | -              | _     | _     | 467            | 655            | 467   |       |

Remaining dimensions on request



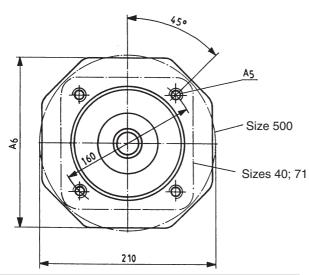

| Main p.   |                | A4VS           | G 40  |       |                | A4VS  | G 71  |       |                | A4VS  | G 125             | j     |                | A4VS  | G 180 | )     |                | A4VS             | G 250 | )     |
|-----------|----------------|----------------|-------|-------|----------------|-------|-------|-------|----------------|-------|-------------------|-------|----------------|-------|-------|-------|----------------|------------------|-------|-------|
| Aux p.    | A <sub>1</sub> | A <sub>2</sub> | $A_3$ | $A_4$ | A <sub>1</sub> | $A_2$ | $A_3$ | $A_4$ | A <sub>1</sub> | $A_2$ | $\mathbf{A}_{_3}$ | $A_4$ | A <sub>1</sub> | $A_2$ | $A_3$ | $A_4$ | A <sub>1</sub> | $\mathbf{A}_{2}$ | $A_3$ | $A_4$ |
| A4VSO 40  | 227            | 288            | 227   | 557   | 259            | 316   | 227   | 585   | 315            | 347   | 227               | 616   | 315            | 371   | 227   | 640   | 386            | 431              | 227   | 700   |
| A4VSO 71  | _              | _              | _     | _     | 259            | 316   | 254   | 615   | 315            | 373   | 254               | 671   | 315            | 397   | 254   | 695   | 386            | 431              | 254   | 729   |
| A4VSO 125 | -              | _              | _     | _     | _              | _     | _     | _     | 315            | 379   | 310               | 734   | 315            | 403   | 310   | 758   | 386            | 469              | 310   | 824   |
| A4VSO 180 | -              | _              | -     | -     | -              | -     | _     | _     | -              | _     | _                 | ı     | 315            | 403   | 318   | 782   | 386            | 469              | 318   | 848   |
| A4VSO 250 | _              | _              | _     | _     | _              | _     | _     | _     | _              | _     | _                 | _     | _              | _     | _     | _     | 386            | 469              | 380   | 908   |

| Main p.   |                | A4VS           | G 355 | 5     |                | A4VS           | G 500 | )     |                     | A4VS             | G 750 | )     |
|-----------|----------------|----------------|-------|-------|----------------|----------------|-------|-------|---------------------|------------------|-------|-------|
| Aux p.    | A <sub>1</sub> | A <sub>2</sub> | $A_3$ | $A_4$ | A <sub>1</sub> | A <sub>2</sub> | $A_3$ | $A_4$ | $\mathbf{A}_{_{1}}$ | $\mathbf{A}_{2}$ | $A_3$ | $A_4$ |
| A4VSO 40  | 393            |                | 227   |       | 435            | 505            | 227   | 774   | 467                 |                  | 227   |       |
| A4VSO 71  | 393            | 460            | 254   | 758   | 435            | 505            | 254   | 803   | 467                 |                  | 254   |       |
| A4VSO 125 | 393            |                | 310   |       | 435            | 505            | 310   | 860   | 467                 |                  | 310   |       |
| A4VSO 180 | 393            |                | 318   |       | 435            | 505            | 318   | 884   | 467                 |                  | 318   |       |
| A4VSO 250 | 393            |                | 380   |       | 435            | 541            | 380   | 980   | 467                 |                  | 380   |       |
| A4VSO 355 | 393            | 498            | 393   | 966   | 435            |                | 393   |       | 467                 |                  | 393   |       |
| A4VSO 500 | _              | _              | _     | _     | 435            | 590            | 441   | 1110  | 467                 | 640              | 441   | 1160  |
| A4VSO 750 | _              | _              | _     | _     | _              | -              | _     | _     | 467                 | 655              | 473   | 1219  |

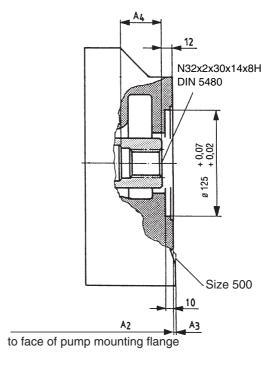
Remaining dimensions on request

# Unit dimensions for combination pumps




| Main p.    |                | A4VS             | G 40              |       |     | A4VS           | G 71  |       |                | A4VS             | G 125             | 5     |                | A4VS  | G 180             | )                |                | A4VS  | G 250          | )     |
|------------|----------------|------------------|-------------------|-------|-----|----------------|-------|-------|----------------|------------------|-------------------|-------|----------------|-------|-------------------|------------------|----------------|-------|----------------|-------|
| Aux p.     | A <sub>1</sub> | $\mathbf{A}_{2}$ | $\mathbf{A}_{_3}$ | $A_4$ | A,  | A <sub>2</sub> | $A_3$ | $A_4$ | A <sub>1</sub> | $\mathbf{A}_{2}$ | $\mathbf{A}_{_3}$ | $A_4$ | A <sub>1</sub> | $A_2$ | $\mathbf{A}_{_3}$ | $\mathbf{A}_{4}$ | A <sub>1</sub> | $A_2$ | $\mathbf{A}_3$ | $A_4$ |
| A10VSO 18  | 227            | 263              | 195               | 458   | 259 | 291            | 195   | 486   | 315            | 347              | 195               | 542   | 315            | 371   | 195               | 566              | 386            | 431   | 195            | 626   |
| A10VSO 28  | 227            | 290              | 206               | 496   | 259 | 316            | 206   | 522   | 315            | 367              | 206               | 573   | 315            | 391   | 206               | 597              | 386            | 431   | 206            | 637   |
| A10VSO 45  | 227            | 290              | 224               | 514   | 259 | 311            | 224   | 535   | 315            | 367              | 224               | 591   | 315            | 391   | 224               | 615              | 386            | 431   | 224            | 655   |
| A10VSO 71  | _              | _                | _                 | _     | 259 | 321            | 257   | 580   | 315            | 378              | 257               | 635   | 315            | 402   | 257               | 659              | 386            | 449   | 257            | 706   |
| A10VSO 100 | -              | ı                | _                 | _     | _   | _              | _     | _     | 315            | 385              | 326               | 711   | 315            | 408,5 | 326               | 735              | 386            | 457   | 326            | 783   |
| A10VSO 140 | ı              | ı                | -                 | _     | _   | _              | _     | _     | _              | 1                | _                 | _     | 315            |       | 275               |                  | 386            | 469   | 337            | 806   |

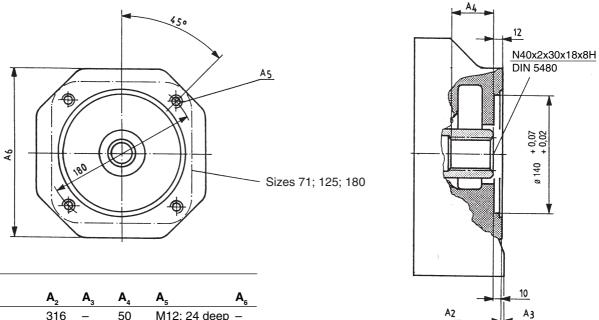
| Main p.    |                | A4VS           | G 355 | 5     |                | A4VS           | G 500 | )     |                | A4VS  | G 750 | )     |
|------------|----------------|----------------|-------|-------|----------------|----------------|-------|-------|----------------|-------|-------|-------|
| Aux p.     | A <sub>1</sub> | A <sub>2</sub> | $A_3$ | $A_4$ | A <sub>1</sub> | A <sub>2</sub> | $A_3$ | $A_4$ | A <sub>1</sub> | $A_2$ | $A_3$ | $A_4$ |
| A10VSO 18  | 393            | 460            | 195   | 655   | 435            | 505            | 195   | 700   | 467            |       | 195   |       |
| A10VSO 28  | 393            |                | 206   |       | 435            |                | 206   |       | 467            |       | 206   |       |
| A10VSO 45  | 393            |                | 224   |       | 435            | 505            | 224   | 729   | 467            |       | 224   |       |
| A10VSO 71  | 393            | 478            | 257   | 735   | 435            | 505            | 257   | 762   | 467            |       | 257   |       |
| A10VSO 100 | 393            |                | 326   |       | 435            | 531            | 326   | 857   | 467            |       | 326   |       |
| A10VSO 140 | 393            | 498            | 337   | 835   | 435            | 530            | 337   | 867   | 467            |       | 337   |       |


Remaining dimensions on request

## **Dimensions – Through drives**

ISO 125, 4-hole; for building on an A4VSO/H/G 40 (splined shaft) Ordering code K31

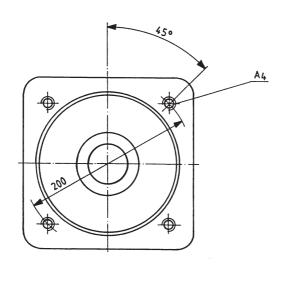



| Size      |                     |                     |                     |                     |                     |
|-----------|---------------------|---------------------|---------------------|---------------------|---------------------|
| Main pump | $\mathbf{A}_{_{2}}$ | $\mathbf{A}_{_{3}}$ | $\mathbf{A}_{_{4}}$ | $\mathbf{A}_{_{5}}$ | $\mathbf{A}_{_{6}}$ |
| 40        | 288                 | _                   | 58                  | M12; 24             | deep –              |
| 71        | 316                 | _                   | 55                  | M12; 24             | deep –              |
| 125       | 347                 | 8                   | 37                  | M12; 18             | deep 150            |
| 180       | 371                 | _                   | 37                  | M12; 18             | deep -              |
| 250       | 431                 | 3                   | 48                  | M12; 18             | deep 200            |
| 500       | 505                 | 12                  | 60                  | M12; 18             | deep -              |

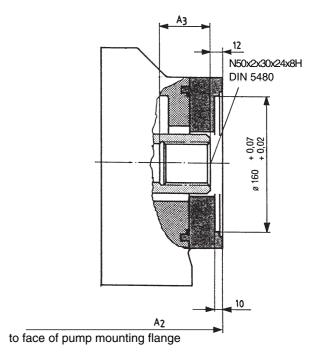


Size

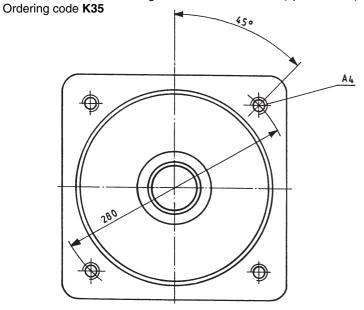
Before finalising your design, please request a certified drawing.
All rights reserved, subject to revision.

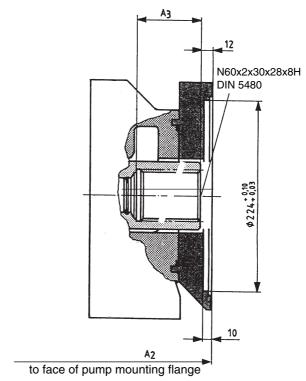

**ISO 140, 4-hole**; for building on an A4VSO/H/G 71 (splined shaft) Ordering code **K33** 




to face of pump mounting flange

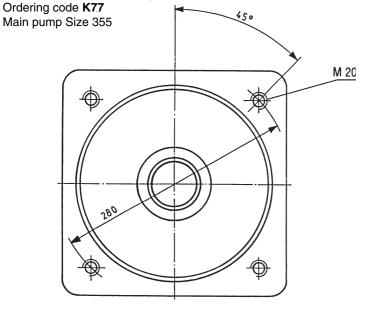
| Main pump | $\mathbf{A}_{_{2}}$ | $A_3$ | $\mathbf{A}_{_{4}}$ | $A_{5}$      | $A_6$ |
|-----------|---------------------|-------|---------------------|--------------|-------|
| 71        | 316                 | -     | 50                  | M12; 24 deep | _     |
| 125       | 373                 | -     | 50                  | M12; 25 deep |       |
| 180       | 397                 | -     | 45                  | M12; 18 deep | 170   |
| 250       | 431                 | 3     | 48                  | M12;18 deep  | 200   |
| 355       | 460                 | -     | 48                  | M12;18 deep  | 220   |
| 500       | 505                 | 12    | 60                  | M12;18 deep  | 240   |
|           |                     |       |                     |              |       |

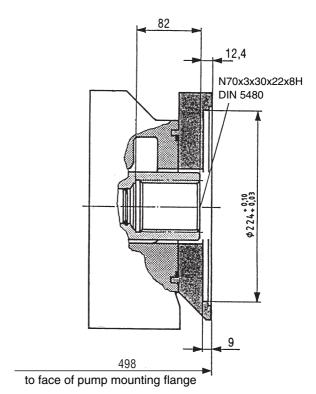

**ISO 160, 4-hole**; for building on an A4VSO/H/G 125 or 180 (splined shaft) Ordering code **K34** 



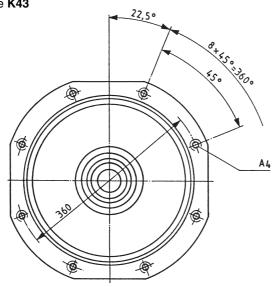

| $\mathbf{A}_{_{2}}$ | $\mathbf{A}_{_3}$ | $\mathbf{A}_{_{4}}$ |                                                                   |
|---------------------|-------------------|---------------------|-------------------------------------------------------------------|
| 379                 | 58                | M16; 31 deep        |                                                                   |
| 403                 | 53                | M16; 32 deep        |                                                                   |
| 469                 | 60                | M16; 32 deep        |                                                                   |
| 505                 | 60                | M16; 24 deep        |                                                                   |
|                     | 403<br>469        | 403 53<br>469 60    | 379 58 M16; 31 deep<br>403 53 M16; 32 deep<br>469 60 M16; 32 deep |

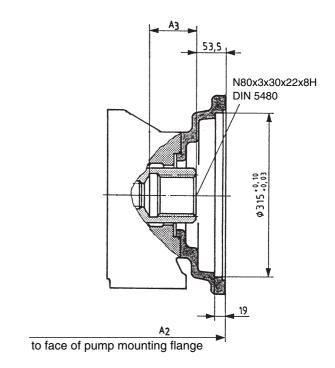



ISO 224, 4-hole; for building on an A4VSO/H/G 250 (splined shaft)



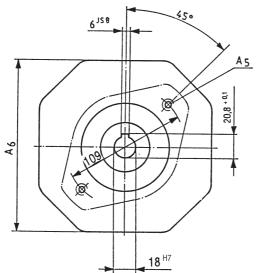




| Size<br>Main pump | $\mathbf{A}_{2}$ | $A_3$ | $A_{\scriptscriptstyle{4}}$ |
|-------------------|------------------|-------|-----------------------------|
| 250               | 469              | 75    | M20; 37 deep                |
| 500               | 541              | 74    | M20; 36 deep                |

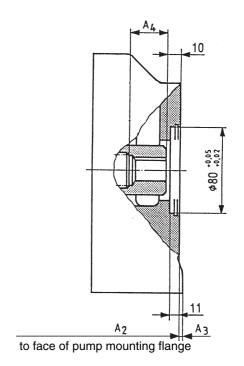

ISO 224, 4-hole; for building on an A4VSO/H/G 355 (splined shaft)



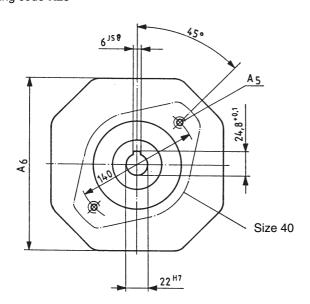



**ISO 315, 8-hole;** for building on an A4VSO/H/G 500 (splined shaft) Ordering code **K43** 

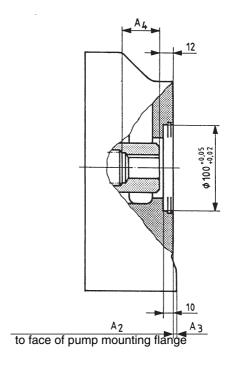




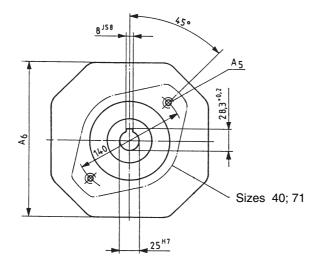

| Size<br>Main pump | A <sub>a</sub> | A, | <b>A</b> <sub>4</sub> |
|-------------------|----------------|----|-----------------------|
| 500               | 590            | 91 | M20;26 deep           |
| 750               | 640            | 91 | M20; 26 deep          |


 $\bf ISO~80,~2\text{-}hole;$  for building on an A10VSO 18 (keyed shaft) - see RE 92712 Ordering code  $\bf K51$ 

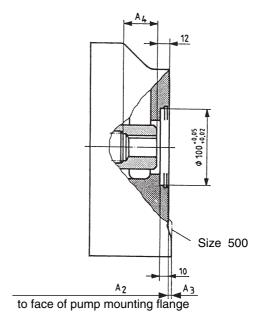



| Size<br>Main pump | Α,  | <b>A</b> <sub>3</sub> | $A_4$ | <b>A</b> <sub>5</sub> |  |  |
|-------------------|-----|-----------------------|-------|-----------------------|--|--|
| 40                | 263 | _                     | 27,8  | M10                   |  |  |
| 71                | 291 | _                     | 37,5  | M10                   |  |  |
| 125               | 347 | 11,5                  | 38,2  | M10                   |  |  |
| 180               | 371 | _                     | 38,2  | M10; 12 deep          |  |  |
| 250               | 431 | 3                     | 33    | M10; 12 deep          |  |  |
| 355               | 460 | _                     | 37,6  | M10                   |  |  |
| 500               | 505 | 15                    | 42,5  | M10                   |  |  |
|                   |     |                       |       |                       |  |  |

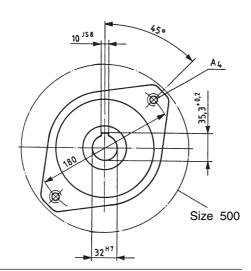



**ISO 100, 2-hole;** for building on an A10VSO 28 (keyed shaft) - see RE 92711 Ordering code **K25** 

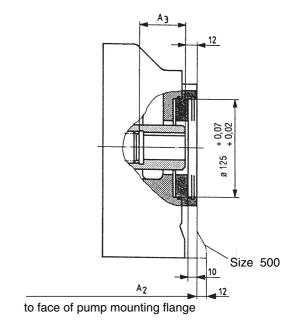



| Size      |                     |                     |                     |                                      |                     |
|-----------|---------------------|---------------------|---------------------|--------------------------------------|---------------------|
| Main pump | $\mathbf{A}_{_{2}}$ | $\mathbf{A}_{_{3}}$ | $\mathbf{A}_{_{4}}$ | $\mathbf{A}_{\scriptscriptstyle{5}}$ | $\mathbf{A}_{_{6}}$ |
| 40        | 290                 | _                   | 55                  | M12; 26                              | deep -              |
| 71        | 316                 | 2                   | 35                  | M12; 18                              | deep 140            |
| 125       | 367                 | -                   | 37                  | M12; 15                              | deep 150            |
| 180       | 391                 | -                   | 37                  | M12; 15                              | deep 150            |
| 250       | 431                 | 3                   | 48                  | M12; 18                              | deep 200            |

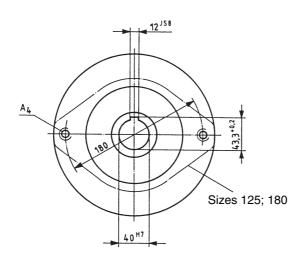



**ISO 100, 2-hole;** for building on an A10VSO 45 (keyed shaft) - see RE 92711 Ordering code **K26** 

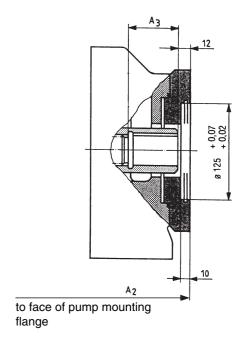



| Size<br>Main pump | A <sub>2</sub> | $\mathbf{A}_{_{3}}$ | $\mathbf{A}_{_{4}}$ | $A_5$     | A <sub>6</sub> |
|-------------------|----------------|---------------------|---------------------|-----------|----------------|
| 40                | 290            | _                   | 61                  | M12; 26 d | eep –          |
| 71                | 311            | _                   | 48                  | M12; 38 d | eep –          |
| 125               | 367            | _                   | 52                  | M12; 35 d | eep 150        |
| 180               | 391            | _                   | 52                  | M12; 20 d | eep 150        |
| 250               | 431            | 3                   | 48                  | M12; 18 d | eep 200        |
| 500               | 505            | 12                  | 60                  | M12; 18 d | eep 240        |

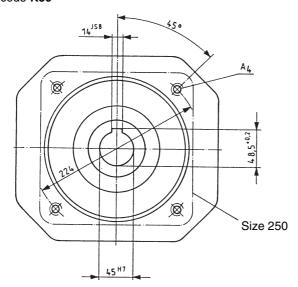



**ISO 125, 2-hole**; for building on an A10VSO 71 (keyed shaft) - see RE 92711 Ordering code **K27** 




| Size      |                  |       |              |
|-----------|------------------|-------|--------------|
| Main pump | $\mathbf{A}_{2}$ | $A_3$ | $A_{_4}$     |
| 71        | 321              | 62    | M16; 29 deep |
| 125       | 378              | 63    | M16; 24 deep |
| 180       | 402              | 58    | M16; 24 deep |
| 250       | 449              | 62    | M16; 24 deep |
| 355       | 478              | 62    | M16; 24 deep |
| 500       | 505              | 60    | M16; 24 deep |
|           |                  |       |              |




**ISO 125, 2-hole**; for building on an A10VSO 100 (keyed shaft) - see RE 92711 Ordering code **K37** 



| Size<br>Main pump | A,    | A, | A,           |
|-------------------|-------|----|--------------|
| 125               | 384   | 70 | M16; 24 deep |
| 180               | 408,5 | 65 | M16; 24 deep |
| 250               | 457   | 68 | M16; 26 deep |
| 500               | 531   | 86 | M16; 26 deep |

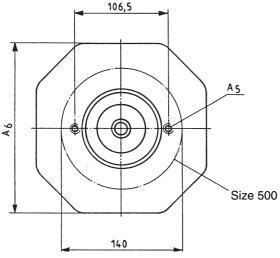


**ISO 180, 4-hole**; for building on an A10VSO 140 (keyed shaft) - see RE 92711 Ordering code **K59** 

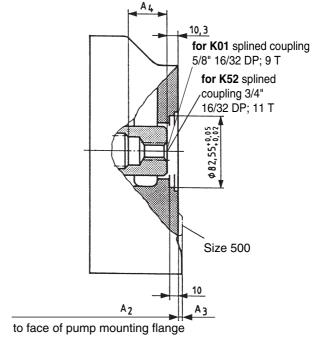


|                 | A3                   |
|-----------------|----------------------|
|                 | <b>▼</b>             |
|                 | 12                   |
|                 | <b>→</b>             |
| Г               |                      |
| i               |                      |
| 1               |                      |
|                 | / i_i                |
| I               |                      |
| 1               |                      |
|                 | /                    |
|                 |                      |
|                 |                      |
|                 | A 1 29               |
|                 |                      |
| ľ               |                      |
|                 | 8 180 +0.07<br>+0.02 |
|                 |                      |
| I               | / HI                 |
|                 |                      |
| 1               |                      |
|                 |                      |
| 1               |                      |
| Į.              |                      |
| 1               | \ 14                 |
| Ļ               | 111                  |
| `               |                      |
|                 | _     10             |
|                 |                      |
|                 | A 2                  |
| to face of nump | mounting flange      |
| is idoo of pump | g nango              |

| Size<br>Main pump | $\mathbf{A}_{2}$ | $A_3$ | $\mathbf{A}_{_4}$ |
|-------------------|------------------|-------|-------------------|
| 250               | 469              | 79    | M16; 32 deep      |
| 355               | 498              | 79    | M16; 32 deep      |
| 500               | 530              | 85    | M16; 25 deep      |


Wth through drive shaft, without hub or intermediate flange, with cover closed Ordering code K99

Unit dimensions available on request

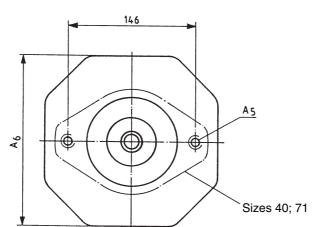

Flange SAE 82-2 (SAE A, 2-hole); for building on an external gear pump G2 (see RE 10030) or internal gear pump 1 PF2GC2/3-1X/XXXXR07MU2 (see RE 10215) – Ordering code **K01** 

Flange SAE 82-2 (SAE A, 2-hole); for building on an A10VSO 18 splined shaft "S" (see RE 92712)

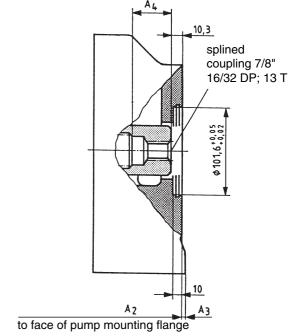
Ordering code K52



| Size      |                     |                     |                     |                     |                  |
|-----------|---------------------|---------------------|---------------------|---------------------|------------------|
| Main pump | $\mathbf{A}_{_{2}}$ | $\mathbf{A}_{_{3}}$ | $\mathbf{A}_{_{4}}$ | $\mathbf{A}_{_{5}}$ | $\mathbf{A}_{6}$ |
| 40        | 263                 | _                   | 40                  | M10; 15             | deep 130         |
| 71        | 291                 | 2                   | 37                  | M10; 15             | deep 140         |
| 125       | 347                 | 8                   | 39                  | M10; 20             | deep 150         |
| 180       | 371                 | _                   | 28                  | M10; 15             | deep -           |
| 250       | 431                 | 3                   | 50                  | M10; 15             | deep 200         |
| 355       | 460                 | _                   | 50                  | M10; 15             | deep 220         |
| 500       | 505                 | 12                  | 62                  | M10; 15             | deep -           |
|           |                     |                     |                     |                     |                  |



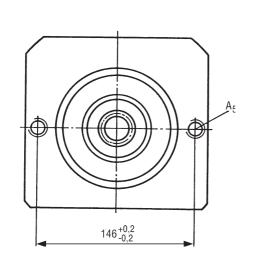

Note that when **fitting a G2 or GC type pump**, **bi-directional rotation** is **not** possible.


Please also note fluid type (see RE 10030 or 10215)

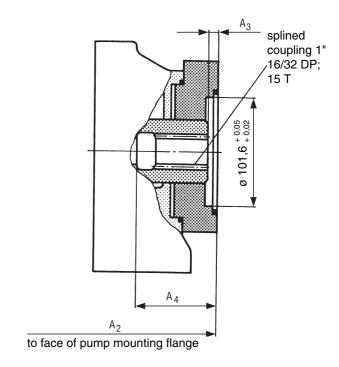
Flange SAE 101-2 (SAE B, 2-hole); for building on an external gear pump G3 (see RE 10039) or an A10VO 28-splined shaft "S" (see RE 92701),

Ordering code K02




| Size      |                     |                     |                     |                                      |                     |
|-----------|---------------------|---------------------|---------------------|--------------------------------------|---------------------|
| Main pump | $\mathbf{A}_{_{2}}$ | $\mathbf{A}_{_{3}}$ | $\mathbf{A}_{_{4}}$ | $\mathbf{A}_{\scriptscriptstyle{5}}$ | $\mathbf{A}_{_{6}}$ |
| 40        | 290                 | _                   | 66                  | M12; 26                              | deep -              |
| 71        | 322                 | _                   | 53                  | M12; 30                              | deep -              |
| 125       | 347                 | 8                   | 39                  | M12; 15                              | deep 150            |
| 180       | 371                 | _                   | 39                  | M12; 15                              | deep 160            |
| 250       | 431                 | 10                  | 51                  | M12; 18                              | deep 200            |
| 355       | 460                 | _                   | 51                  | M12; 18                              | deep 220            |
| 500       | 505                 | _                   | 63                  | M12; 18                              | deep 240            |
| 750       | 555                 | _                   | 63                  | M12; 18                              | deep 258            |
|           |                     |                     |                     |                                      |                     |



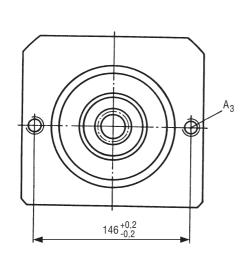

Note that when fitting a G3 type pump, bi-directional rotation is not possible.

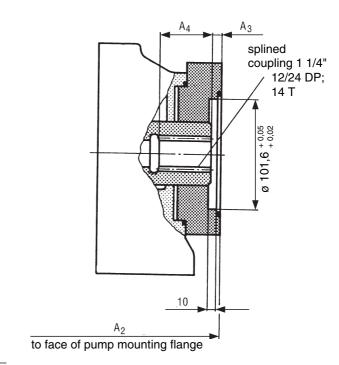
Please also note fluid type (see RE 10039).

Flange SAE 101-2 (SAE B, 2-hole); for building on an internal gear pump 1PF2GC4-1X/0XXXR07MU2, (see RE 10215) or an A10VO 45-splined shaft "S" (see RE 92701), Ordering code K04



| Size      |                     |                     |                     |               |
|-----------|---------------------|---------------------|---------------------|---------------|
| Main pump | $\mathbf{A}_{_{2}}$ | $\mathbf{A}_{_{3}}$ | $\mathbf{A}_{_{4}}$ | $A_{5}$       |
| 125       | 347                 | 10                  | 49                  | M12; 15 deep  |
|           | 400                 |                     |                     | M10: 10 de en |
| 355       | 460                 | 9                   | 60                  | M12; 18 deep  |



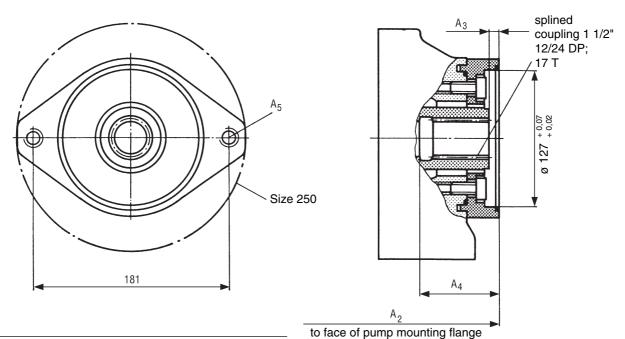


Note that when fitting a GC type pump, bi-directional rotation is not possible.

Please also note fluid type (see RE 10215).

**Flange SAE 101-2 (SAE B, 2-hole);** for building on an internal gear pump 1PF2GC5-1X/0XXXR07MU2, (see RE 10215),

Ordering code K06



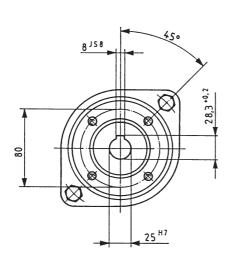



| Size<br>Main pump | ۸              | ٨                     | ٨              | ٨              |
|-------------------|----------------|-----------------------|----------------|----------------|
| waiii puilip      | A <sub>2</sub> | <b>A</b> <sub>3</sub> | A <sub>4</sub> | A <sub>5</sub> |
| 125               | 378            | 9                     | 13,5           | M12; 18 deep   |

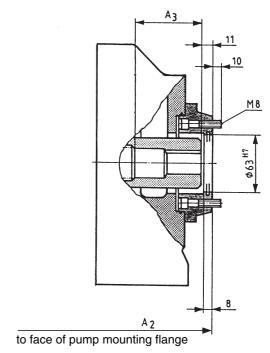
Note that when fitting a GC type pump, bi-directional rotation is  ${\bf not}$  possible.

Please also note fluid type (see RE 10215).

**Flange SAE 127-2 (SAE C2-hole)**; for building on an internal gear pump 1PF2GC6-1X/XXXXR07MU2, (see RE 10215), or an A10VO 100 splined shaft "S" (see RE 92701), Ordering code **K24** 



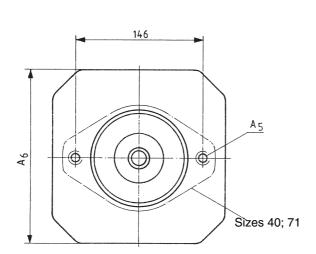

| Size      |                     |       |       |                     |
|-----------|---------------------|-------|-------|---------------------|
| Main pump | $\mathbf{A}_{_{2}}$ | $A_3$ | $A_4$ | $\mathbf{A}_{_{5}}$ |
| 125       | 377                 | 9     | 74    | M16; 24 deep        |
| 180       | 401                 | 10    | 72    | M16; 24 deep        |
| 250       | 451                 | 10,5  | 76    | M16; 20 deep        |
|           |                     |       |       |                     |


Note that when **fitting a GC type pump**, **bi-directional rotation** is **not** possible.

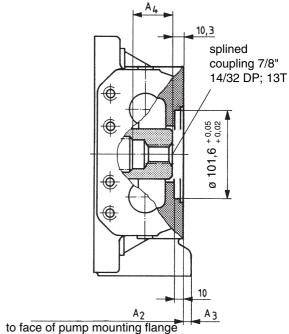
Please also note fluid type (see RE 10215).

63 mm dia., 4-hole; for building on a radial piston pump R4 (see RE 11263), Ordering code K57




| Size      | <b>A</b>       |                     |
|-----------|----------------|---------------------|
| Main pump | $\mathbf{A_2}$ | $\mathbf{A}_{_{3}}$ |
| 40*       | 289            | 61                  |
| 71*       | 319            | 56                  |
| 125       | 375            | 62                  |
| 250       | 459            | 78                  |



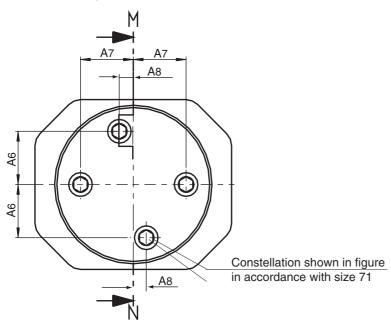

When fitting an R4 pump please note direction of rotation and fluid type (see RE 11263).

\* with A4VSO 40 and 71 LR.D, LR.S, LR.G it is only possible to fit an R4-3 piston pump.

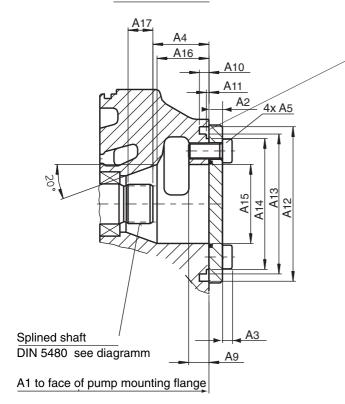
Flange SAE 101-2 (SAE B, 2-hole); for building on an external gear pump G4 (see RE 10042) Ordering code K68



| Size      |                     |                     |                     |                     |                     |
|-----------|---------------------|---------------------|---------------------|---------------------|---------------------|
| Main pump | $\mathbf{A}_{_{2}}$ | $\mathbf{A}_{_{3}}$ | $\mathbf{A}_{_{4}}$ | $\mathbf{A}_{_{5}}$ | $\mathbf{A}_{_{6}}$ |
| 40        | 290                 | _                   | 66                  | M12; 26 de          | еер –               |
| 71        | 322                 | _                   | 53                  | M12; 30 de          | еер –               |
| 125       | 347                 | 8                   | 39                  | M12; 15 de          | eep 150             |
| 180       | 371                 | _                   | 39                  | M12; 15 de          | eep 160             |
| 250       | 431                 | 10                  | 51                  | M12; 18 de          | eep 200             |
| 355       | 460                 | _                   | 51                  | M12; 18 de          | eep 220             |
| 500       | 505                 | _                   | 63                  | M12; 18 de          | eep 240             |
| 750       | 555                 | _                   | 63                  | M12; 18 de          | eep 258             |



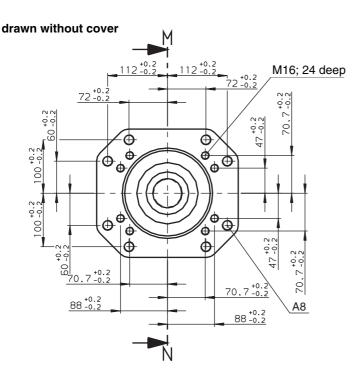

Note that when fitting a G4 type pump, bi-directional rotation is not possible.


Please also note fluid type (see RE 10042).

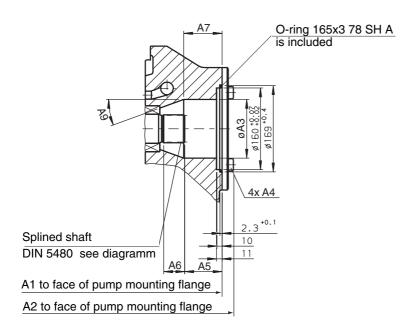
With through drive shaft, without hub or intermediate flange, with cover closed Ordering code K99 Size 40 - 355

(Size 500 see page 31)




Section M - N

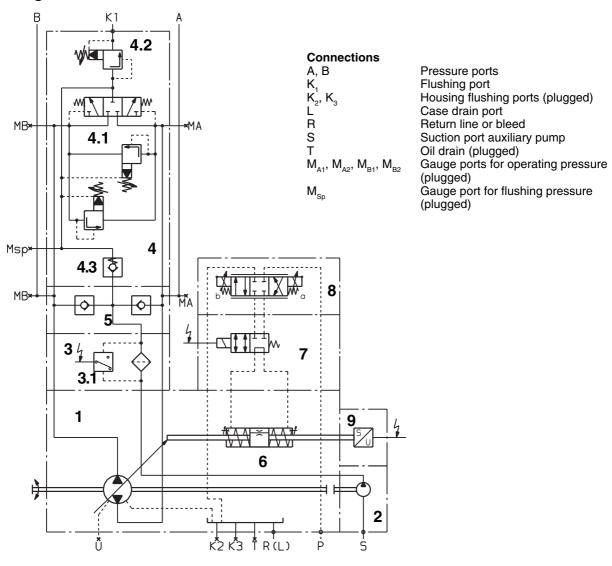



| Size<br>Main pump | <b>O-ring</b><br>(not included<br>in supply) | Splined shaft<br>DIN 5480 |
|-------------------|----------------------------------------------|---------------------------|
| 40                | 99x3 78 SH A                                 | W25x1,25x30x18x9g         |
| 71                | PRP 245 7509                                 | W30x1,25x30x22x9g         |
| 125               | 119x3 78 SH A                                | W35x1,25x30x26x9g         |
| 180               | 119x3 78 SH A                                | W35x1,25x30x26x9g         |
| 250               | 162x3 78 SH A                                | W42x1,25x30x32x9g         |
| 355               | 162x3 78 SH A                                | W42x1,25x30x32x9g         |

| Size      |                |                  |                     |        |                     |         |                  |           |                  |                 |                 |                   |                    |                        |                        |                   |                        |
|-----------|----------------|------------------|---------------------|--------|---------------------|---------|------------------|-----------|------------------|-----------------|-----------------|-------------------|--------------------|------------------------|------------------------|-------------------|------------------------|
| Main pump | A <sub>1</sub> | $\mathbf{A}_{2}$ | $\mathbf{A}_{_{3}}$ | $A_4$  | $\mathbf{A}_{_{5}}$ | $A_6$   | $\mathbf{A}_{7}$ | $A_8$     | $\mathbf{A}_{9}$ | A <sub>10</sub> | A <sub>11</sub> | $\mathbf{A}_{12}$ | A <sub>13</sub>    | A <sub>14</sub>        | <b>A</b> <sub>15</sub> | $\mathbf{A}_{16}$ | <b>A</b> <sub>17</sub> |
| 40        | 263            | 10               | 7,5                 | 51,3±1 | M12x25              | 37±0,2  | 37±0,2           | 0         | 18               | 9               | 2,3+0,1         | ø118              | ø105 <sub>g6</sub> | ø97,6 <sub>-0,4</sub>  | ø52                    | 44                | 14                     |
| 71        | 291            | 10               | 7,5                 | 48±1   | M12x28              | 42,3    | 45±0,15          | 15,4±0,15 | 18               | 9               | 2,7+0,1         | ø130              | ø116 <sub>g6</sub> | ø106,4 <sub>-0,4</sub> | ø63                    | 39                | 16                     |
| 125       | 347            | 12               | 8,5                 | 49,7±1 | M14x30              | 47±0,15 | 47±0,15          | 0         | 18               | 8,5             | 2,3+0,1         | ø137              | ø124 <sub>g6</sub> | ø116 <sub>-0,4</sub>   | ø70                    | 46                | 22                     |
| 180       | 371            | 12               | 8,5                 | 49,7±1 | M14x30              | 47±0,15 | 47±0,15          | 0         | 18               | 8,5             | 2,3+0,1         | ø137              | ø124 <sub>g6</sub> | ø116 <sub>-0,4</sub>   | ø70                    | 46                | 25                     |
| 250       | 431            | 15               | 12                  | 61,4±1 | M20x40              | 63±0,15 | 63±0,15          | 0         | 26               | 9               | 2,3+0,1         | ø180              | ø165 <sub>g6</sub> | ø157 <sub>-0,4</sub>   | ø88                    | 64                | 30,5                   |
| 355       | 460            | 15               | 12                  | 61,4±1 | M20x40              | 63±0,15 | 63±0,15          | 0         | 26               | 9               | 2,3+0,1         | ø180              | ø165 <sub>06</sub> | ø157 <sub>-04</sub>    | ø88                    | 64                | 34                     |

With through drive shaft, without hub or intermediate flange, with cover closed Ordering code K99 Size 500 - 1000

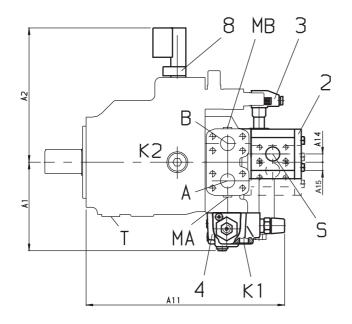


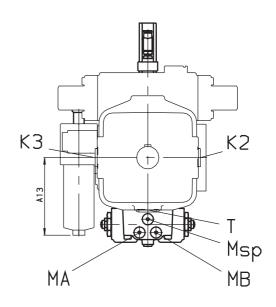

## Section M - N

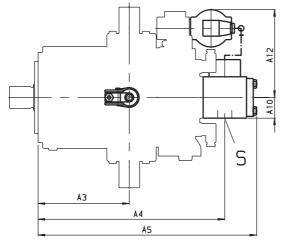


| Size      |                     |                  |       |        |                     |                  |                  |                |       |                        |
|-----------|---------------------|------------------|-------|--------|---------------------|------------------|------------------|----------------|-------|------------------------|
| Main pump | $\mathbf{A}_{_{1}}$ | $\mathbf{A}_{2}$ | $A_3$ | $A_4$  | $\mathbf{A}_{_{5}}$ | $\mathbf{A}_{6}$ | $\mathbf{A}_{7}$ | A <sub>8</sub> | $A_9$ | Splined shaft DIN 5480 |
| 500       | 505                 | 520              | ø115  | M16x30 | 73                  | 41               | 75               | M20;24 deep    | 20°   | W55x1,25x30x42x9g      |
| 750       | 555                 | 577              | ø115  | M16x24 | 73                  | 41               | 75               | M20;24 deep    | 20°   | W55x1,25x30x42x9g      |
| 1000      | 628                 | 653              | ø142  | M16x24 | 75                  | 50               | 65               | M20;30 deep    | 15°   | W65x1,25x30x50x9g      |

## 40 H03 Example - A4VSG 71 EO1K/10L-PPB10H029F 125 22 180

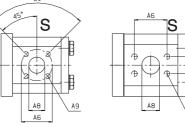

# **Circuit diagram**

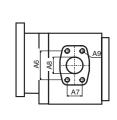




|                                                          | Ordering code                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variable pump A4VSG 40-180                               | A4VSG                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                    |
| Boost pump - for options see page 32 (mounted and piped) | <b>H 02</b> or                                                                                                                                                                                                                                                                                                                                                                          | H 03                                                                                                                                                                                                                                                                                                               |
| Boost circuit filter                                     |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                    |
| Opto-electrical clogging indicator                       | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                    |
| Valve block SDVB 16 for A4VSG 40-180                     |                                                                                                                                                                                                                                                                                                                                                                                         | Sizes 250-500 are fitted with SDVB 30, circui                                                                                                                                                                                                                                                                      |
| Pressure relief valve                                    | 9                                                                                                                                                                                                                                                                                                                                                                                       | type 1, Size 750 and Size 1000 with SDVB 50                                                                                                                                                                                                                                                                        |
| Flushing valve                                           |                                                                                                                                                                                                                                                                                                                                                                                         | as per RE 95533 (in prep.).                                                                                                                                                                                                                                                                                        |
| Non-return valve                                         |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                    |
| Boost circuit check valves                               | standard on A                                                                                                                                                                                                                                                                                                                                                                           | A4VSG                                                                                                                                                                                                                                                                                                              |
| Hydraulic control device                                 |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                    |
| Short circuit valve Z4WE6E68-2X/AG24NZ4                  | E0.41/                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                    |
| 4/3-way proportional valve                               | EUIK                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                    |
| Inductive positional transducer (feedback device         | e)                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                    |
| Electronic control not included. To be ordered s         | eparately.                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                    |
|                                                          | Boost pump - for options see page 32 (mounted and piped)  Boost circuit filter Opto-electrical clogging indicator  Valve block SDVB 16 for A4VSG 40-180 Pressure relief valve Flushing valve Non-return valve  Boost circuit check valves  Hydraulic control device Short circuit valve Z4WE6E68–2X/AG24NZ4 4/3-way proportional valve Inductive positional transducer (feedback device | Boost pump - for options see page 32 (mounted and piped)  Boost circuit filter Opto-electrical clogging indicator  Valve block SDVB 16 for A4VSG 40-180 Pressure relief valve Flushing valve Non-return valve  Boost circuit check valves  Hydraulic control device Short circuit valve Z4WE6E68–2X/AG24NZ4  FO 1K |

## **Unit dimensions**

A4VSG with auxiliary pump, flushing block, inductive positional transducer and filter






## Connection S (for options see page 32)

G2 aux. pump G3 aux. pump





G4 aux. pump

| U | nit | dim | ensions |  |
|---|-----|-----|---------|--|

| Size     | A <sub>1</sub> | A <sub>2</sub> | $A_3$ | A <sub>4</sub>                         | <b>A</b> <sub>5</sub>                  | $A_6$ | <b>A</b> <sub>7</sub> | A <sub>8</sub> | A <sub>9</sub> | <b>A</b> <sub>10</sub> | <b>A</b> <sub>11</sub> | A <sub>12</sub> | <b>A</b> <sub>13</sub> | A <sub>14</sub> * | A <sub>15</sub> * |
|----------|----------------|----------------|-------|----------------------------------------|----------------------------------------|-------|-----------------------|----------------|----------------|------------------------|------------------------|-----------------|------------------------|-------------------|-------------------|
| 40       | 174            | 246            | 144   | 311                                    | 361                                    | 40    | _                     | 20             | M6; 13 deep    | 42                     | approx. 364            | 175             | 115                    | 16,3              | 16,3              |
| 71<br>71 | 177            | 265            | 166   | 337 <sup>1)</sup><br>340 <sup>2)</sup> | 341 <sup>1)</sup><br>345 <sup>2)</sup> | 40    | _                     | 20             | M6; 13 deep    | 42                     | 389                    | 180             | 115                    | 16,3              | 16,3              |
| 125      | 196,5          | 298            | 203   | 409                                    | 473                                    | 52,5  | 26,2                  | 25,4           | M10; 16 deep   | 46                     | 442                    | 195             | 172                    | 18,3              | 18,3              |
| 180      | 196,5          | 298            | 203   | 439,5                                  | 511                                    | 58,8  | 30,2                  | 31,75          | M10; 16 deep   | 46                     | 442                    | 228             | 178                    | 18,3              | 18,3              |
| 250      | 317            | 345            | 248   | 519,5                                  | 590,5                                  | 58,8  | 30,2                  | 31,75          | M10; 16 deep   | 46                     | 448                    | 228             | 167                    | 18,3              | 18,3              |
| 355      | 319            | 345            | 248   | 566                                    | 641                                    | 69,8  | 35,8                  | 38             | M12            | 90                     | 455                    | 266             | 218                    | 24,3              | 24,3              |
| 500      | 353            | 392            | 279   | 622                                    | 708                                    | 77,8  | 42,8                  | 50             | M12            | 104                    | 487                    | 260             | 203                    | 24,3              | 24,3              |

<sup>1)</sup> G2: Size 11 <sup>2)</sup> G2: Size 16 **Ports** 

 $^{\star}$   $\mathbf{A}_{\mathbf{14}}$  when fitting aux. pump clockwise direction of rotation

\* **A**<sub>15</sub> when fitting aux. pump anti-clockwise direction of rotation

| Size | M <sub>A</sub> , M <sub>B</sub> | K <sub>1</sub>   | K <sub>2</sub> , K <sub>3</sub> | S                                     | M <sub>SP</sub> |
|------|---------------------------------|------------------|---------------------------------|---------------------------------------|-----------------|
| 40   | M14x1,5                         | M22x1,5; 14 deep | M22x1,5                         | rectangular flange form B             | M14x1,5         |
| 71   | M14x1,5                         | M22x1,5; 14 deep | M27x2                           | rectangular flange form B             | M14x1,5         |
| 125  | M14x1,5                         | M22x1,5; 14 deep | M33x2                           | SAE 1" (standard pressure series)     | M14x1,5         |
| 180  | M14x1,5                         | M22x1,5; 14 deep | M33x2                           | SAE 1 1/4" (standard pressure series) | M14x1,5         |
| 250  | M14x1,5                         | M33x2; 18 deep   | M42x2                           | SAE 1 1/4" (standard pressure series) | M22x1,5         |
| 355  | M14x1,5                         | M33x2;18 deep    | M42x2                           | SAE 1 1/2" (standard pressure series) | M22x1,5         |
| 500  | M14x1,5                         | M33x2; 18 deep   | M48x2                           | SAE 2" (standard pressure series)     | M22x1,5         |

G4 - RE 10042

○ = in preparation or on request

# Mounted and piped auxiliary pumps H02 - H05

The following auxiliary pumps are supplied mounted and piped:

| Size A4VSG                       |                 | 40        | 71          | 125        | 180        | 250      | 355   | 500750 | Designation |
|----------------------------------|-----------------|-----------|-------------|------------|------------|----------|-------|--------|-------------|
| 1 auxiliary pump for <b>boos</b> | t oil circuit   | n < 2800  | rpm         |            |            |          |       |        |             |
| mounted aux. pump                | cm <sup>3</sup> | -         | G2 16       | G3 26      | G3 32      | G3 38    | G4 80 | G4 100 | O H02       |
| 1 auxiliary pump for <b>boos</b> | t oil circuit   | n > 2800  | rpm         |            |            |          |       |        |             |
| mounted aux. pump                | cm <sup>3</sup> | G2 11     | G2 11       | _          | _          | _        | -     | -      | - H03       |
| 1 auxiliary pump for comm        | non boost a     | and pilot | oil circuit | (only with | i EO1) n < | 2800 rpm |       |        |             |
| mounted aux. pump                | cm <sup>3</sup> | -         | G2 16       | G3 26      | -          | G3 38    | -     | -      | - H04       |
| 1 auxiliary pump for comm        | non boost a     | and pilot | oil circuit | (only with | i EO1) n > | 2800 rpm |       |        |             |
| mounted aux. pump                | cm <sup>3</sup> | G2 11     | G2 11       | -          | -          | _        | _     | -      | - H05       |
| For unit dimensions and          | l technical (   | data see  | individual  | data she   | ets:       |          |       |        |             |
| G2 - RE 10030                    |                 |           |             |            |            |          |       |        |             |
| G3 - RE 10039                    |                 |           |             |            |            |          |       |        |             |

Valve block SDVB 16 (for Sizes 40...180), SDVB 30 control type 1 (for Sizes 250...500) and SDVB 50 (for Sizes 750 and 1000) see RE 95533 (in preparation)

Brueninghaus Hydromatik GmbH Plant Horb An den Kelterwiesen 14 72160 Horb, Germany Tel. +49 (0) 74 51-92-0 Fax +49 (0) 74 51-82 21 info.brm@boschrexroth.de www.boschrexroth.com/brm © 2002 by Brueninghaus Hydromatik GmbH, 72160 Horb

All rights reserved. No part of this document may be reproduced or stored, processed, duplicated or circulated using electronic systems, in any form or by any means, without the prior written authorization of Brueninghaus Hydromatik GmbH. Violations shall give rise to claims for damages.

The data specified above only serve to describe the product. They do not indicate any specific condition or suitability for a certain application. The information provided does not release the user from the obligation of own judgement and veification. It must be remembered that our products are subject to natural wear and ageing.